cm bđt:
\(\sqrt{a}+1>\sqrt{a+1}\)với a>0
(m cần lời giải chi tiết)
TKS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left\{{}\begin{matrix}5x-\sqrt{5}\left(1+\sqrt{3}\right)y=\sqrt{5}\\\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)x+\sqrt{5}\left(1+\sqrt{3}\right)y=1+\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-\sqrt{5}\left(1+\sqrt{3}\right)y=\sqrt{5}\\-2x+\sqrt{5}\left(1+\sqrt{3}\right)y=1+\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5x-\sqrt{3}\left(1+\sqrt{3}\right)y=\sqrt{5}\\3x=1+\sqrt{3}+\sqrt{5}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{1+\sqrt{3}+\sqrt{5}}{3}\\y=\frac{x\sqrt{5}-1}{1+\sqrt{3}}=\frac{\sqrt{5}+\sqrt{15}+2}{1+\sqrt{3}}\end{matrix}\right.\)
a) \(P=\dfrac{A}{B}=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\dfrac{\sqrt{x}+1}{x-1}\left(đk:x>0,x\ne1\right)\)
\(=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{x-1}{\sqrt{x}+1}=\dfrac{\left(x-1\right)^2}{\sqrt{x}\left(x-1\right)}=\dfrac{x-1}{\sqrt{x}}\)
b) \(P\sqrt{x}=m+\sqrt{x}\)
\(\Leftrightarrow\dfrac{x-1}{\sqrt{x}}.\sqrt{x}=m+\sqrt[]{x}\)
\(\Leftrightarrow x-1=m+\sqrt{x}\)
\(\Leftrightarrow m=x-\sqrt{x}-1\)
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\) \(=\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\) \(=\frac{\sqrt{a}-1}{\sqrt{a}}\)
\(M=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}+1}{a-2\sqrt{a}+1}\)
=\(\left[\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right]:\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)^2}\)
=\(\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}\)
=\(\frac{\sqrt{a}-1}{\sqrt{a}}\)
=\(\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{a}\)
Lời giải:
Ta có:
\(f'(x)=3x^2+2(a-1)x+2\)
Theo định lý về dấu của tam thức bậc 2, để \(f'(x)>0\) với mọi \(x\in\mathbb{R}\) thì \(\Delta'=(a-1)^2-6<0\)
\(\Leftrightarrow -\sqrt{6}< a-1< \sqrt{6}\)
\(\Leftrightarrow 1-\sqrt{6}< a< 1+\sqrt{6}\)
Đáp án B
1.
\(2x+1\ge0\Rightarrow x\ge-\dfrac{1}{2}\)
Khi đó pt đã cho tương đương:
\(x^2+2x+2m=\left(2x+1\right)^2\)
\(\Leftrightarrow x^2+2x+2m=4x^2+4x+1\)
\(\Leftrightarrow3x^2+2x+1=2m\)
Xét hàm \(f\left(x\right)=3x^2+2x+1\) trên \([-\dfrac{1}{2};+\infty)\)
\(-\dfrac{b}{2a}=-\dfrac{1}{3}< -\dfrac{1}{2}\)
\(f\left(-\dfrac{1}{2}\right)=\dfrac{3}{4}\) ; \(f\left(\dfrac{1}{3}\right)=\dfrac{2}{3}\)
\(\Rightarrow\) Pt đã cho có 2 nghiệm pb khi và chỉ khi \(\dfrac{2}{3}< 2m\le\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{1}{3}< m\le\dfrac{3}{8}\)
\(\Rightarrow P=\dfrac{1}{8}\)
3.
Đặt \(x^2=t\ge0\Rightarrow\left[{}\begin{matrix}x=\sqrt{t}\\x=-\sqrt{t}\end{matrix}\right.\)
Pt trở thành: \(t^2-3mt+m^2+1=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9m^2-4\left(m^2+1\right)>0\\t_1+t_2=3m>0\\t_1t_2=m^2+1>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{2}{\sqrt{5}}\)
Ta có:
\(M=x_1+x_2+x_3+x_4+x_1x_2x_3x_4\)
\(=-\sqrt{t_1}-\sqrt{t_2}+\sqrt{t_1}+\sqrt{t_2}+\left(-\sqrt{t_1}\right)\left(-\sqrt{t_2}\right)\sqrt{t_1}.\sqrt{t_2}\)
\(=t_1t_2=m^2+1\) với \(m>\dfrac{2}{\sqrt{5}}\)
\(P=\sqrt{2x+\sqrt{4x-1}}+\sqrt{2x-\sqrt{4x-1}}\) với \(\dfrac{1}{4}< x< \dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{2}P=\sqrt{4x+2\sqrt{4x-1}}+\sqrt{4x-2\sqrt{4x-1}}\)
\(=\sqrt{\left(\sqrt{4x-1}\right)^2+2\sqrt{4x-1}+1}+\sqrt{\left(\sqrt{4x-1}\right)^2-2\sqrt{4x-1}+1}\)
\(=\sqrt{4x-1}+1+\left|\sqrt{4x-1}-1\right|\)
Do \(\dfrac{1}{4}< x< \dfrac{1}{2}\Leftrightarrow0< \sqrt{4x-1}< 1\)
\(\Rightarrow P=\dfrac{1}{\sqrt{2}}\left(\sqrt{4x-1}+1+1-\sqrt{4x-1}\right)=\sqrt{2}\)
Vậy \(P=\sqrt{2}\).
\(\hept{\begin{cases}\left|x-2\right|+2\sqrt{y+3}=9\\x+\sqrt{y+3}=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left|x-2\right|+2\sqrt{y+3}=9\\x-2+\sqrt{y+3}=-3\end{cases}}\)(1)
Đặt \(\hept{\begin{cases}x-2=a\\\sqrt{y+3}=b\left(\ge0\right)\end{cases}}\)
Xét: \(x\ge2\)
=> (1) trở thành \(\Leftrightarrow\hept{\begin{cases}x-2+2\sqrt{y+3}=9\\x-2+\sqrt{y+3}=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+2b=9\\a+b=-3\end{cases}}\)
Xét \(x< 2\)
=> (1) trở thành \(\Leftrightarrow\hept{\begin{cases}-\left(x-2\right)+2\sqrt{y+3}=9\\x-2+\sqrt{y+3}=-3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-a+2b=9\\a+b=-3\end{cases}}\)
Từ hệ pt trên \(< =>\hept{\begin{cases}|x-2|+2\sqrt{y+3}=9\\x+\sqrt{y+3}=-1\end{cases}}\)
\(< =>\hept{\begin{cases}|x-2|+2\sqrt{y+3}=9\\2x+2\sqrt{y+3}=-2\end{cases}}\)
\(< =>\hept{\begin{cases}|x-2|-2x=11\\x+\sqrt{y+3}=-1\end{cases}}\)
Xét \(x\ge2\)=> \(|x-2|=\left(x-2\right)\)
\(< =>\hept{\begin{cases}x-2-2x=11\\x+\sqrt{y+3}=-1\end{cases}}\)
\(< =>\hept{\begin{cases}x=-13\\-13+\sqrt{y+3}=-1\end{cases}}\)
\(< =>\hept{\begin{cases}x=-13\\\sqrt{y+3}=12\end{cases}}\)
\(< =>\hept{\begin{cases}x=-13\\\sqrt{y+3}=\sqrt{144}\end{cases}}\)
\(< =>\hept{\begin{cases}x=-13\\y=141\end{cases}}\)
Có ai check cái :( e mới học dạng này nên chưa chắc :(((
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)
Bình phương 2 vế ta có:
\(a+1+2\sqrt{a}>a+1\)
\(\Leftrightarrow2\sqrt{a}>0\left(true\right)\)
\(\Rightarrow Q.E.D\)
Bình phương 2 vế ta có :
\(a-1-2\sqrt{a}>a-1\)
\(\Leftrightarrow2\sqrt{a}>0\)(đúng với \(\forall\)\(a\))
Vậy \(\sqrt{a}+1>\sqrt{a+1}\)