\(\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{1}{x-\sqrt{x}}\right):\left(\dfrac{1}{1+\sqrt{x}}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2019

\(2\sqrt{5}+\sqrt{\left(1-\sqrt{5}\right)^2}\\ =2\sqrt{5}+\left|1-\sqrt{5}\right|\\ =2\sqrt{5}+\sqrt{5}-1\\ =3\sqrt{5}-1\)

\(\dfrac{1}{\sqrt{3}+1}+\dfrac{1}{\sqrt{3}-1}2\sqrt{3}\\ =\dfrac{1}{\sqrt{3}+1}+\dfrac{2\sqrt{3}}{\sqrt{3}-1}\\ =\dfrac{\sqrt{3}-1+2\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}^2-1^2}\\ =\dfrac{\sqrt{3}-1+6+2\sqrt{3}}{2}\\ =\dfrac{3\sqrt{3}+5}{2}\)

Bài 2:

a: ĐKXĐ: 1/x+1>=0

=>x+1>0

=>x>-1

B: ĐKXĐ: (x+1)(x-1)>=0

=>x>=1 hoặc x<=-1

ĐKXĐ: x-1>0; x+1>0; x^2-1>=0

=>x>1

25 tháng 9 2018

\(a.\dfrac{\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}}{\sqrt{x^2-4\left(x-1\right)}}\left(1-\dfrac{1}{x-1}\right)=\dfrac{\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}}{\sqrt{x^2-4x+4}}.\dfrac{x-2}{x-1}=\dfrac{\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|}{\left|x-2\right|}.\dfrac{x-2}{x-1}\left(x>1\right)\)

Tới đây dễ r , bạn tự chia TH ra làm nhé :D

\(b.\dfrac{1}{\sqrt{x}+\sqrt{x-1}}-\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{\sqrt{x^3}-x}{1-\sqrt{x}}=\dfrac{\sqrt{x}-\sqrt{x-1}-\sqrt{x}-\sqrt{x-1}}{\left(\sqrt{x}+\sqrt{x-1}\right)\left(\sqrt{x}-\sqrt{x-1}\right)}+\dfrac{x\sqrt{x}-x}{\sqrt{x}-1}=-2\sqrt{x-1}+x\left(x\ge1\right)\)

25 tháng 9 2018

Bạn ơi câu a có vẻ có vấn đề ý. Nếu bạn áp dụng HĐT thì phải là√(x-2)2 chứ nhỉ. Mong bạn giải đáp

5 tháng 7 2018

\(1.\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}=2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)=8\) \(2.a,b.A=\left(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}+\dfrac{x^2-4x-1}{x^2-1}\right).\dfrac{x+2003}{x}\) ( x # 0 ; x # -1 ; x # 1 )

\(A=\dfrac{x^2+2x+1-x^2+2x-1+x^2-4x-1}{x^2-1}.\dfrac{x+2003}{x}\)

\(A=\dfrac{x^2-1}{x^2-1}.\dfrac{x+2003}{x}=\dfrac{x+2003}{x}\)

c. \(A=1+\dfrac{2003}{x}\)

Để A ∈ Z ⇒ x ∈ { 1 ; -1 ; 2003 ; - 2003 )

KL...............

24 tháng 4 2017

a/ ĐKXĐ: \(x\ge0;x\ne1\)

= \(\dfrac{x+1+\sqrt{x}}{x+1}:\left[\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}\right]-1\)

= \(\dfrac{x+1+\sqrt{x}}{x+1}:\dfrac{x+1-2\sqrt{x}}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)

= \(\dfrac{x+1+\sqrt{x}}{x+1}:\dfrac{\left(\sqrt{x}-1\right)^2}{\left(x+1\right)\left(\sqrt{x}-1\right)}-1\)

\(=\dfrac{\left(x+1+\sqrt{x}\right)\left(x+1\right)\left(\sqrt{x}-1\right)}{\left(x+1\right)\left(\sqrt{x}-1\right)^2}-1\)

= \(\dfrac{x+1+\sqrt{x}}{\sqrt{x}-1}-1=\dfrac{x+2}{\sqrt{x}-1}\)

b/ Ta có:

\(Q=P-\sqrt{x}\)

= \(\dfrac{x+2}{\sqrt{x}-1}-\sqrt{x}\)

= \(\dfrac{\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}=1+\dfrac{3}{\sqrt{x}-1}\)

Để Q nhận giá trị nguyên thì \(1+\dfrac{3}{\sqrt{x}-1}\in Z\)

\(\Leftrightarrow\dfrac{3}{\sqrt{x}-1}\in Z\) ( vì 1\(\in Z\) )

\(\Leftrightarrow\sqrt{x}-1\inƯ_{\left(3\right)}\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-1=3\\\sqrt{x}-1=-3\\\sqrt{x}-1=1\\\sqrt{x}-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=-2\\\sqrt{x}=2\\\sqrt{x}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=16\left(tm\right)\\\\x=4\left(tm\right)\\x=0\left(tm\right)\end{matrix}\right.\)

Vậy để biểu thức \(Q=P-\sqrt{x}\) nhận giá trị nguyên thì x=\(\left\{16;4;0\right\}\)

1 tháng 8 2018

a/ đkxđ: x > 0; x≠1

b/ \(A=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right):\left(\dfrac{x-\sqrt{x}}{\sqrt{x}+1}-\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\right)\)

\(=\dfrac{x-1}{2\sqrt{x}}\cdot\left(\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)^2-\sqrt{x}\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{x-1}{2\sqrt{x}}\cdot\dfrac{x\sqrt{x}-2x+\sqrt{x}-x\sqrt{x}-2x-\sqrt{x}}{x-1}\)

\(=\dfrac{-4x}{2\sqrt{x}}=-2\sqrt{x}\)

1 tháng 8 2018

c/ A > -6

\(\Leftrightarrow-2\sqrt{x}>-6\Leftrightarrow\sqrt{x}< 3\Leftrightarrow x< 9\)

kết hợp với đkxđ => 0 < x < 9

Bài 2:

a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)

\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)

\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)

b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)

17 tháng 7 2021

\(D=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(D=\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{x+2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(D=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(E=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\frac{x-\sqrt{x}}{1-\sqrt{x}}\right)=\left(1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)

\(E=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

18 tháng 7 2021

ĐK : a >= 0 , a khác 1

\(C=\left[\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]\div\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a+\sqrt{a}-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\times\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\frac{a}{\sqrt{a}+1}\)