Tìm hệ số x^3 trong đa thức sau
a) Q(x) = (x^2 - x + 1)x - (x+1)x^2
b) G(x) = [5x^2 - a(x+a)] - [3(a^2 - x^2)+2ax] + [2ax-4(a+2ax^2)]
Giúp em với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(Q_{(2)} + Q_{(-1)} = 0\)
\(\Rightarrow 2^2 - 2 . a . 2 + ( -1 )^2 - 2 . a . ( -1 ) = 0\)
\(\Rightarrow 4 - 4a + 1 + 2a=0\)
\(\Rightarrow ( 4 + 1 ) + ( -4a + 2a ) = 0\)
\(\Rightarrow 5 - 2a = 0\)
\(\Rightarrow a = \dfrac{5}{2}\)
Vậy \(a = \dfrac{5}{2}\)
Bài 1:
* \(f\left(x\right)=2xa^2+2ax+4\)
\(\Rightarrow f\left(1\right)=2.1.a^2+2a.1+4=4\)
\(\Rightarrow2a^2+2a+4=4\)
\(\Rightarrow2a^2+2a=0\)
\(\Rightarrow2a\left(a+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2a=0\\a+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=0\\a=-1\end{matrix}\right.\)
* \(g\left(x\right)=x^2-5x-b\)
\(\Rightarrow g\left(5\right)=5^2-5.5-b=5\)
\(\Rightarrow-b=5\)
\(\Rightarrow b=-5\)
Có: \(f\left(x\right)=2ax^2-4\left(bx-1\right)+5x+c-11\)
\(=2ax^2-4bx+4+5x+c-11\)
\(=2ax^2+\left(-4b+5\right)x+\left(c-11\right)\)
\(\Rightarrow f\left(x\right)=x^2-5x+6\Leftrightarrow\left\{{}\begin{matrix}2a=1\\-4b+5=-5\\c-11=6\end{matrix}\right.\) (theo đồng nhất hệ số)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=\dfrac{5}{2}\\c=17\end{matrix}\right.\)
Ta có \(A\left(1\right)=B\left(-2\right)\Leftrightarrow12+2a+a^2=8-\left|2a+3\right|\left(-2\right)+a^2\)
\(\Leftrightarrow4+2a=2\left|2a+3\right|\)
đk a >= -2
\(\left[{}\begin{matrix}4a+6=4+2a\\4a+6=-2a-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=-1\left(tm\right)\\a=-\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)
Bài 2:
a) x(x - 3)- y(3 - x)
= x(x - 3) + y(x - 3)
= (x - 3)(x + y) (1)
Thay x = \(\frac{1}{3}\); y = \(\frac{8}{3}\)vào (1)
Ta có: (\(\frac{1}{3}\)- 3)(\(\frac{1}{3}\)+ \(\frac{8}{3}\))
= \(\frac{-8}{3}\). 3
= -8