K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2019

ýÔn tập Đường tròn 3

22 tháng 3 2017

O M I D C A B

(Trình vẽ hình còn non!)

Ta có: \(\hept{\begin{cases}MA=MB\\OA=OB=R\end{cases}}\)(MA=MB vì tính chất 2 tiếp tuyến cắt nhau tại M)

\(\Rightarrow OM\)là trung trực của \(AB\)

\(\Rightarrow IA=IB\)và \(OM⊥AB\)tại \(I\)

Xét \(\Delta BCM\)và \(\Delta BDM\)có:

\(\hept{\begin{cases}\widehat{DMB}:chung\\\widehat{BDM}=\widehat{CBM}\end{cases}}\)(Góc BDM = góc CBM vì cùng chắn cung BC)

\(\Rightarrow\Delta BCM~\Delta DCM\left(g.g\right)\)

\(\Rightarrow\frac{MB}{MD}=\frac{MC}{MB}\)

\(\Rightarrow MB.MB=MC.MD\)

\(\Rightarrow MB^2=MC.MD\)

Xét \(\Delta OMB\)vuông tại \(B\), đường cao \(BI\)có:

\(MB^2=MI.MO\)

Mà: \(MB^2=MD.MC\left(cmt\right)\)

\(\Rightarrow MD.MC=MI.MO\left(đpcm\right)\)

cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CDA/ chứng minh OI vuông góc CD tại I và tứ giác MAOI nội tiếpB/ chứng minh...
Đọc tiếp

cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CD
A/ chứng minh OI vuông góc CD tại I và tứ giác MAOI nội tiếp

B/ chứng minh MA2 =MC.MD và tứ giác OHCD nội tiếp
C/ trên cung nhỏ AD lấy điểm N sao cho DN=BD . qua C vẽ đường thẳng song song với DN cắt đường thẳng MN tại E và cũng qua C vẽ đường thẳng song song viws BD cắt cạnh A tại F . chứng minh CEF cân
câu này hơi dài , cảm ơn mấy bạn vì công đọc , sai thì thôi, đúng thì ok  , nhưng cảm ơn mn vì đọc cái bài dài này nhá :))

0

b: Xét ΔMAC và ΔMDA có

góc MAC=góc MDA

góc AMC chung

=>ΔMAC đồng dạng với ΔMDA

=>MA^2=MC*MD=MH*MO

=>MC/MO=MH/MD

=>ΔMCH đồng dạng với ΔMOD

=>góc MCH=góc MOD

=>góc HOD+góc HCD=180 độ

=>HODC nội tiếp

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>OM vuông góc AB

b: góc CAE=1/2*180=90 độ

Xét ΔOAM vuông tại A và ΔCAS vuông tại A có

góc AOM=góc ACS

=>ΔOAM đồng dạng với ΔCAS

26 tháng 11 2023

Xét tứ giác MIOK có

\(\widehat{MIO}+\widehat{MKO}=90^0+90^0=180^0\)

=>MIOK là tứ giác nội tiếp

=>M,I,O,K cùng thuộc một đường tròn

26 tháng 11 2023

lấy A là trung điểm của OM,xét tam giác OMI có:
A là trung điểm của OM
O,M,I thuộc 1 đường tròn. (1)
Xét tam giác OMK có A là trung điểm của OM
O,M,K thuộc 1 đường tròn (2)
từ (1) và (2) suy ra 4 điểm M,I,O,K cùng thuộc 1 đường tròn