a,4-x=2(x-4)^2
b,(x^2+1)(x-2)+2x=4
tìm x nhé,help
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{4}:x+\dfrac{1}{2}:\dfrac{1}{4}=4\)
\(\Rightarrow\dfrac{3}{4}:x+2=4\)
\(\Rightarrow\dfrac{3}{4}:x=2\Rightarrow x=\dfrac{3}{8}\)
\(\dfrac{3}{4}:x+\dfrac{1}{2}:\dfrac{1}{4}=4\)
\(\Leftrightarrow\dfrac{3}{4}:x=2\)
hay \(x=\dfrac{3}{8}\)
a/ \(2x-3=5x+2\)
\(\Leftrightarrow5x-2x=-3-2\)
\(\Leftrightarrow3x=-5\Leftrightarrow x=-\dfrac{5}{3}\)
Vậy..
b. \(2x\left(x-1\right)=2x+2\)
\(\Leftrightarrow2x^2-4x-2=0\)
\(\Leftrightarrow x^2-2x-1=0\)
\(\Leftrightarrow\left(x-1+\sqrt{2}\right)\left(x-1-\sqrt{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1-\sqrt{2}\\x=1+\sqrt{2}\end{matrix}\right.\)
Vậy...
c/ ĐKXĐ : \(x\ne\pm2\)
\(\dfrac{x+2}{x-2}-\dfrac{x^2}{x^2-4}=\dfrac{6}{\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{x^2}{\left(x-2\right)\left(x+2\right)}=\dfrac{6\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow x^2+4x+4-x^2=6x-12\)
\(\Leftrightarrow2x-16=0\)
\(\Leftrightarrow x=8\)
Vậy..
Bài 1:
a) \(x\left(x+1\right)+x\left(x-1\right)-2x^2\)
\(=x^2+x+x^2-x-2x^2\)
\(=2x^2-2x^2\)
\(=0\)
b) \(\left(x+2\right)\left(x^2-x+1\right)-\left(x-2\right)\left(x^2+x+1\right)\)
\(=x^3-x^2+x+2x^2-2x+2-x^3-x^2-x+2x^2+2x+2\)
\(=\left(x^3-x^3\right)+\left(-x^2+2x^2-x^2+2x^2\right)+\left(x-2x-x+2x\right)+\left(2+2\right)\)
\(=2x^2+4\)
c) \(\left(3-x\right)^2+2\left(x-3\right)\left(x+7\right)+\left(x+7\right)^2\)
\(=\left(x-3\right)^2+2\left(x-3\right)\left(x+7\right)+\left(x+7\right)^2\)
\(=\left[\left(x-3\right)+\left(x+7\right)\right]^2\)
\(=\left(x-3+x+7\right)^2\)
\(=\left(2x+4\right)^2\)
Lời giải:
1.
\(M(x)=A(x)-2B(x)+C(x)\)
\(2x^5 – 4x^3 + x^2 – 2x + 2-2(x^5 – 2x^4 + x^2 – 5x + 3)+ (x^4 + 4x^3 + 3x^2 – 8x + \frac{43}{16})\)
\(=5x^4+2x^2-\frac{21}{16}\)
2.
Khi $x=-\sqrt{0,25}=-0,5$ thì:
\(M(x)=5.(-0,5)^4+2(-0,5)^2-\frac{21}{16}=\frac{-1}{2}\)
3)
$M(x)=0$
$\Leftrightarrow 5x^4+2x^2-\frac{21}{16}=0$
$\Leftrightarrow 80x^4+32x^2-21=0$
$\Leftrightarrow 4x^2(20x^2-7)+3(20x^2-7)=0$
$\Leftrightarrow (4x^2+3)(20x^2-7)=0$
Vì $4x^2+3>0$ với mọi $x$ thực nên $20x^2-7=0$
$\Rightarrow x=\pm \sqrt{\frac{7}{20}}$
Đây chính là giá trị của $x$ để $M(x)=0$
a) \(4-x=2\left(x-4\right)^2\)
\(\Rightarrow4-x=2\left(x^2-8x+16\right)\)
\(\Rightarrow4-x=2x^2+16x-32=0\)
\(\Rightarrow-2x^2+15x-28=0\)
\(\Rightarrow-2x\left(x-4\right)+7\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right)\left(-2x+7\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\-2x+7=0\end{cases}}\Rightarrow\orbr{\begin{cases}-2x=-7\\x=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=4\end{cases}}\)
b) \(\left(x^2+1\right)\left(x-2\right)+2x=4\)
\(\Rightarrow\left(x^2+1\right)\left(x-2\right)+2x-4=0\)
\(\Rightarrow\left(x^2+1\right)\left(x-2\right)+2\left(x-2\right)=0\)
\(\Rightarrow\left(x^2+1+2\right)\left(x-2\right)=0\)
\(\Rightarrow\left(x^2+3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+3=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=-3\text{(Không thoả mãn)}\\x=2\end{cases}}\)