3 điện trở mắc như hình vẽ:
Khi đổi chỗ vị trí các điện trở với nhau người ta thu được điện trở tương đương 2,5\(\Omega\); 4\(\Omega\); 4,5\(\Omega\). Tìm R1, R2, R3.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
R1//R2
a, =>\(Rtd=\dfrac{R1R2}{R1+R2}=\dfrac{20.20}{20+20}=10\left(ôm\right)\)
b,R1//R2//R3
\(=>\dfrac{1}{Rtd}=\dfrac{1}{R1}+\dfrac{1}{R2}+\dfrac{1}{R3}=\dfrac{1}{20}+\dfrac{1}{20}+\dfrac{1}{15}=>Rtd=6\left(ôm\right)\)c,
=>U1=U2=U3=30V
\(=>I1=\dfrac{U1}{R1}=\dfrac{30}{20}=1,5A,=>I2=\dfrac{U2}{R2}=1,5A\)
\(=>I3=\dfrac{U3}{R3}=2A\)
\(=>Im=\dfrac{U}{Rtd}=\dfrac{30}{6}=5A\)
a. Ta có: R2 = 3R1
Điện trở R1 là:
Rtđ = R1 + R2
Rtđ = R1 + 3R1
24 = 4R1
=> R1 = 24/4 = 6(ôm)
b) Vì R1 nt R2 nt R3 => Điện trở tương đương của mạch:
Rtđ = R1 + R2 + R3 = 29 + 15 + 27 = 71 (ôm)
c) Vì R1 // R2 // R3 => Điện trở tương đương của mạch:
\(\text{\dfrac{1}{Rtđ} = }\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}=\dfrac{1}{250}+\dfrac{1}{50}+\dfrac{1}{750}=\dfrac{19}{750}\)
=> Rtđ = \(\dfrac{750}{19}=39,47\) (ôm)
R1nt(R2//R3)
a) \(R_{23}=\dfrac{R_2.R_3}{R_2+R_3}=2\left(\Omega\right)\)
\(\rightarrow R_{td}=R_1+R_{23}=4+2=6\left(\Omega\right)\)
b) Ta có : \(I_1=I_{23}=I=\dfrac{U}{R_{tđ}}=\dfrac{6}{2}=3A\)
\(U_{23}=U_2=U_3=I_{23}.R_{23}=3.2=6V\)
\(\rightarrow I_2=\dfrac{U_2}{R_2}=\dfrac{6}{6}=1A\)
Điện trở tương đương: \(R=\dfrac{\left(R1+R2\right)R3}{R1+R2+R3}=\dfrac{\left(15+25\right)10}{15+25+10}=8\Omega\)
\(U=U12=U3=12V\)(R12//R3)
\(I=U:R=12:8=1,5A\)
\(I3=U3:R3=12:10=1,2A\)
\(R1ntR2\Rightarrow I12=I1=I2\)
Mà: \(I12=I-I3=1,5-1,2=0,3A\)
\(\Rightarrow I12=I1=I2=0,3A\)
R1= 20Ω
R2= 20/2= 10 Ω
R3= 20/4= 5Ω
\(\frac{1}{R_{tđ}}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}\\ \Leftrightarrow\frac{1}{R_{tđ}}=\frac{1}{20}+\frac{1}{10}+\frac{1}{5}=\frac{7}{20}\\ \Rightarrow R_{tđ}=\frac{20}{7}\left(\Omega\right)\)
(R1 nt R2) // R3