K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2019

\(A=1-\frac{2}{x}+\frac{2014}{x^2}\)\(=\left(\frac{1}{x}-\frac{1}{2014}\right)^2+\frac{2013}{2014}\ge\frac{2013}{2014}\)

\(A_{min}=\frac{2013}{2014}\Leftrightarrow x=2014\left(TM\right)\)

\(B=\frac{x^2-2x+2018}{2018x^2}\)

\(=\frac{1}{2018}-\frac{2}{2018x}+\frac{1}{x^2}\)

\(=\left(\frac{1}{x}-\frac{1}{\sqrt{2018}}\right)^2\ge0\)

Vậy giá trị nhỏ nhất \(B=0\)khi và chỉ khi  \(\frac{1}{x}-\frac{1}{\sqrt{2018}}=0\)

\(\Rightarrow\frac{1}{x}=\frac{1}{\sqrt{2018}}\)

\(\Rightarrow x=\sqrt{2018}\)

12 tháng 11 2016

\(A=\frac{x^2-2x+2014}{x^2}\)

Ta có :

\(\frac{x^2-2x+2014}{x^2}-\frac{2013}{2014}=\frac{2014x^2-2.2014.x+2014^2-2013x^2}{2014x^2}=\frac{x^2-2.2004.x+2014^2}{2014x^2}=\frac{\left(x-2014\right)^2}{2014x^2}\ge\frac{2013}{2014}\)

\(\Rightarrow A\ge\frac{2013}{2014}\)

Dấu " = " xảy ra khi và chỉ khi \(x=2014\)

Vậy \(Min_A=\frac{2013}{2014}\Leftrightarrow x=2014\)

20 tháng 2 2020

Bạn rút gọn sai rồi, mình nhìn đề bài b) cho x>2 thì là biết chắc bạn sai , mình làm lại nhé : ( ĐKXĐ : tự làm )

a) \(Q=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\left(\frac{\left(x+2\right)\left(x-2\right)+x+6-x^2}{x\left(x-2\right)}\right)\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}:\frac{x+2}{x\left(x-2\right)}\)

\(=\frac{x\left(x+2\right)}{\left(x-2\right)^2}\cdot\frac{x\left(x-2\right)}{x+2}=\frac{x^2}{x-2}\)

Vậy \(Q=\frac{x^2}{x-2}\)

b) Ta có : \(Q=\frac{x^2}{x-2}=\frac{x^2-4+4}{x-2}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)

Do \(x>2\Rightarrow x-2>0\) và \(\frac{4}{x-2}>0\)do đó áp dụng BĐT Cô si cho 2 số dương ta được :

\(x-2+\frac{4}{x-2}\ge2\sqrt{\left(x-2\right).\left(\frac{4}{x-2}\right)}=2\cdot\frac{1}{2}=1\)

\(\Rightarrow Q\ge1+4=5\)

Vậy : GTNN của \(Q=5\)

P/s : Ai vào kiểm tra hộ cái :)) Sợ sai lắm nhé, cảm ơn nha 33

20 tháng 2 2020

Nếu chưa học Cô si thì chứng minh rồi dùng thôi :

Bài này sử dụng Cô - si hai số nên cần chứng minh BĐT :

\(a+b\ge2\sqrt{ab}\left(a,b>0\right)\)

Thật vậy : \(a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )

Do đó \(a+b\ge2\sqrt{ab}\) với a,b >0

Dấu "=" xảy ra \(\Leftrightarrow a=b\)

16 tháng 9 2017

sao mk ko nhìn thấy câu trả lời vậy bn

14 tháng 5 2018

\(A=1-\frac{2}{x}+\frac{2014}{x^2}\)

đặt 1/x=t ta có

\(A=1-2t+2014t^2\)

   \(=2014\left(t^2-\frac{1}{1007}+\frac{1}{2014}\right)\)

   =\(2014[\left(t-\frac{1}{2014}\right)^2-\left(\frac{1}{2014}\right)^2+\frac{1}{2014}]\)

=\(2014\left(t-\frac{1}{2014}\right)^2+\frac{2013}{2014}\)\(\ge\frac{2013}{2014}\)

dấu''='' xảy ra khi t-1/2014=0 <=>1/x=1/2014=>x=2014

18 tháng 9 2017

\(A-\frac{2013}{2014}=\frac{x^2-2x+2014}{x^2}-\frac{2013}{2014}=\frac{2014x^2-2.2014.x+2014^2-2013x^2}{2014x^2}\)

\(=\frac{x^2-2.x.2014+2014^2}{2014x^2}=\frac{\left(x-2014\right)^2}{2014x^2}\ge0\)

=>\(A\ge\frac{2013}{2014}\)

Dấu "=" xảy ra khi x=2014

Vậy minA=2013/2014 khi x=2014

5 tháng 12 2017

A=\(\frac{2014x^2-2.2014x-2014^2}{2014x^2}\)=\(\frac{2013x^2+\left(x^2-2.2014x-2014^2\right)}{2014x^2}\)=\(\frac{2013x^2+\left(x-2014\right)^2}{2014x^2}\)=\(\frac{2013}{2014}+\frac{\left(x-2014\right)^2}{2014x^2}\ge\frac{2013}{2014}\)

vậy minA=\(\frac{2013}{2014}\)dấu bằng xảy ra khi x=2014

26 tháng 12 2021

\(\Leftrightarrow Mx^2=x^2-2x+\sqrt{2015}\\ \Leftrightarrow x^2\left(M-1\right)+2x-\sqrt{2015}=0\)

Ta có \(\Delta'\ge0\Leftrightarrow1+\sqrt{2015}\left(M-1\right)\ge0\)

\(\Leftrightarrow1+\sqrt{2015}M-\sqrt{2015}\ge0\\ \Leftrightarrow M\ge\dfrac{\sqrt{2015}-1}{\sqrt{2015}}\)

Vậy \(M_{min}=\dfrac{\sqrt{2015}-1}{\sqrt{2015}}\Leftrightarrow x=-\dfrac{b'}{a}=-\dfrac{1}{M-1}=\dfrac{-\sqrt{2015}}{\sqrt{2015}-1}\)

Đặt \(t=\frac{x}{y}+\frac{y}{x};t\ne0\). Ta có:

\(t^2=\left(\frac{x}{y}+\frac{y}{x}\right)^2=\frac{x^2}{y^2}+2+\frac{y^2}{x^2}\)

\(\Rightarrow\frac{x^2}{y^2}+\frac{y^2}{x^2}=t^2-2\)

\(\Rightarrow P=t^2-2-t=\left(t-\frac{1}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\)

Vậy GTNN của P là:\(-\frac{9}{4}\)khi \(t=\frac{1}{2}\)

P/s Các bạn tham khảo nha

14 tháng 3 2021

\(P-\dfrac{2}{3}=\dfrac{x^2-6x+9}{3x^2}=\dfrac{\left(x-3\right)^2}{3x^2}\ge0\Rightarrow P\ge\dfrac{2}{3}\).

Dấu "=" xảy ra khi x  =  3.