K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2019

vế phải < \(2.\left(\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{225}}\right)\)

<\(2\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{224}+\sqrt{225}}\right)\)

\( =2.\left(-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{224}+\sqrt{225}\right)\)

=\(2.\left(-1+\sqrt{225}\right)=2.14=28\)

18 tháng 6 2017

\(\frac{1}{\sqrt{2}}=\frac{2}{2\sqrt{2}}< \frac{2}{\sqrt{2}+\sqrt{1}}=\frac{2\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=2\left(\sqrt{2}-1\right)\)

\(\frac{1}{\sqrt{3}}=\frac{2}{2\sqrt{3}}< \frac{2}{\sqrt{3}+\sqrt{2}}=\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}=2\left(\sqrt{3}-\sqrt{2}\right)\)

.

.

.

\(\frac{1}{\sqrt{225}}=\frac{2}{2\sqrt{225}}< \frac{2}{\sqrt{225}+\sqrt{224}}=\frac{2\left(\sqrt{225}-\sqrt{224}\right)}{\left(\sqrt{225}+\sqrt{224}\right)\left(\sqrt{225}-\sqrt{224}\right)}\)\(=2\left(\sqrt{225}-\sqrt{224}\right)\)

\(\Rightarrow\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{225}}< 2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{225}-\sqrt{224}\right)\)

\(\Rightarrow\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{225}}< 2\left(\sqrt{225}-1\right)=2\left(15-1\right)=28\)

12 tháng 10 2020

a.\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+1-n}=2\left(\sqrt{n+1}+\sqrt{n}\right)\)

áp dụng công thức cho biểu thức A có A>\(2\left(-\sqrt{2}+\sqrt{26}\right)>7\left(1\right)\)

(so sánh bình phương 2 số sẽ ra nha)

\(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-n+1}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

áp dụng công thức cho biểu thức A ta CM được

A<\(2\left(\sqrt{2}-\sqrt{2-1}+\sqrt{3}-\sqrt{3-1}+...+\sqrt{25}-\sqrt{25-1}\right)\)

=\(2\left(-\sqrt{1}+\sqrt{25}\right)=2\left(-1+5\right)=2\cdot4=8\left(2\right)\)

từ (1) và (2) => ĐPCM

b. tương tự câu a ta CM đc BT đã cho=B>\(2\sqrt{51}-2\)> \(5\sqrt{2}\left(1\right)\)

và B<\(2\sqrt{50}=\sqrt{2}\cdot\sqrt{2\cdot50}=10\sqrt{2}\left(2\right)\)

từ (1) và (2)=>ĐPCM

(bạn nhớ phải biến đổi 1 thành 1/\(\sqrt{1}\) trc khi áp dụng công thức nha)

MỜI BẠN THAM KHẢO

18 tháng 1 2020

+ \(2\cdot\frac{1}{\sqrt{n}+\sqrt{n+1}}< \frac{2}{\sqrt{n}+\sqrt{n}}< 2\cdot\frac{1}{\sqrt{n-1}+\sqrt{n}}\) \(\Rightarrow2\left(\sqrt{n+1}-\sqrt{n}\right)< \frac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\)

\(\Rightarrow A>2\left(\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{101}-\sqrt{100}\right)\)

\(\Rightarrow A>2\left(\sqrt{101}-\sqrt{2}\right)>17\)

+ \(A< 2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\Rightarrow A< 2\left(\sqrt{100}-1\right)=18\)