Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{\sqrt{2}}=\frac{2}{2\sqrt{2}}< \frac{2}{\sqrt{2}+\sqrt{1}}=\frac{2\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=2\left(\sqrt{2}-1\right)\)
\(\frac{1}{\sqrt{3}}=\frac{2}{2\sqrt{3}}< \frac{2}{\sqrt{3}+\sqrt{2}}=\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}=2\left(\sqrt{3}-\sqrt{2}\right)\)
.
.
.
\(\frac{1}{\sqrt{225}}=\frac{2}{2\sqrt{225}}< \frac{2}{\sqrt{225}+\sqrt{224}}=\frac{2\left(\sqrt{225}-\sqrt{224}\right)}{\left(\sqrt{225}+\sqrt{224}\right)\left(\sqrt{225}-\sqrt{224}\right)}\)\(=2\left(\sqrt{225}-\sqrt{224}\right)\)
\(\Rightarrow\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{225}}< 2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{225}-\sqrt{224}\right)\)
\(\Rightarrow\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{225}}< 2\left(\sqrt{225}-1\right)=2\left(15-1\right)=28\)
- Ta xét : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}>\frac{2}{\sqrt{n}+\sqrt{n+1}}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(n+1\right)-n}=2\left(\sqrt{n+1}-\sqrt{n}\right)< 2\sqrt{n+1}-2\)
- Ta xét : \(\frac{1}{\sqrt{n}}=\frac{2}{\sqrt{n}+\sqrt{n}}< \frac{2}{\sqrt{n}+\sqrt{n-1}}=\frac{2\left(\sqrt{n}-\sqrt{n-1}\right)}{n-\left(n-1\right)}=2\left(\sqrt{n}-\sqrt{n-1}\right)< 2\sqrt{n}\) ;
TA THẤY\(X+\sqrt{X}\)>=0VỚI MỌI X LỚN HƠN 0 X KHÁC 1
=> \(X+\sqrt{X}+1\) >=1 VỚI MỌI X LỚN HƠN 0 X KHÁC 1
=> \(\frac{2}{X+\sqrt{X}+1}\)<=2 VỚI MỌI X LỚN HƠN 0 X KHÁC 1
HAY A<=2 (1)
\(X+\sqrt{X}+1\)>0 VỚI MỌI X LỚN HƠN 0 X KHÁC 1 VÀ 2>0
=> \(\frac{2}{X+\sqrt{X}+1}\)>0
HAY A<0(2)
TỪ (1) VÀ (2) => 0<A<=2
TA THẤY\(X+\sqrt{X}\)>=0VỚI MỌI X LỚN HƠN 0 X KHÁC 1
=> \(X+\sqrt{X}+1\) >=1 VỚI MỌI X LỚN HƠN 0 X KHÁC 1
=> \(\frac{2}{X+\sqrt{X}+1}\)<=2 VỚI MỌI X LỚN HƠN 0 X KHÁC 1
HAY A<=2 (1)
\(X+\sqrt{X}+1\)>0 VỚI MỌI X LỚN HƠN 0 X KHÁC 1 VÀ 2>0
=> \(\frac{2}{X+\sqrt{X}+1}\)>0
HAY A<0(2)
TỪ (1) VÀ (2) => 0<A<=2