Cho hpt \(\left\{{}\begin{matrix}2x+3y=m\\5x-y=1\end{matrix}\right.\) a) Giải hpt với m=14 b) Tìm giá trị của m để hpt có nghiệm x>0 ; y>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
1)
\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)
trừ 2 vế của pt cho nhau ta tìm được
\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)
để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)
a/ Xét pt : \(\left\{{}\begin{matrix}mx-y=1\\\dfrac{x}{2}-\dfrac{y}{2}=335\end{matrix}\right.\)
Khi \(m=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=1\\x-y=670\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-669\\y=-1339\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}mx-y=1\\x-y=670\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\mx-\left(x-670\right)=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=x-670\\x\left(m-1\right)=-669\end{matrix}\right.\)
Để pt có nghiệm duy nhất \(\Leftrightarrow m\ne1\)
Vậy...
(x:y)=(2;3)
\(\Leftrightarrow\left\{{}\begin{matrix}2-3m=0\\2m-3=m+1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2-3m=0\\m-4=0\end{matrix}\right.\)
\(\Leftrightarrow2-3m=m-4\)
\(\Leftrightarrow4m=6\)
\(\Leftrightarrow m=\dfrac{3}{2}\)
a/ Bạn tự giải
b/ Hệ tương đương:
\(\left\{{}\begin{matrix}2x+3y=m\\15x-3y=3\end{matrix}\right.\) \(\Rightarrow17x=m+3\Rightarrow x=\frac{m+3}{17}\)
\(\Rightarrow y=5x-1=\frac{5x+15}{17}-1=\frac{5m-2}{17}\)
\(\left\{{}\begin{matrix}x>0\\y>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\frac{m+3}{17}>0\\\frac{5m-2}{17}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m>\frac{2}{5}\end{matrix}\right.\) \(\Rightarrow m>\frac{2}{5}\)