K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2019

$\Delta$ $$\Delta$$

28 tháng 5 2019

olm chặn gõ latex rồi chỉ dùng dc công thức thôi bạn ạ :(

8 tháng 8 2017

Dảnh àk =))

8 tháng 8 2017

Cứ đăng đi - úng hộ ^^

26 tháng 6 2020

t chuyên Anh mà:v

26 tháng 6 2020

tth_newrì lí.-. thế lm Toán giỏi phết.Toàn cho mấy bài toán hack não không.Để tìm lại cái não đã bị hack r

31 tháng 10 2017

đúng rồi

1 tháng 11 2017

 chó điên

8 tháng 8 2019

toán lớp 1 ??? giỡn quài , phi logic :3

8 tháng 8 2019

Ap dung bdt AM-GM cho 2 so ko am A,B ta co 

\(\sqrt{A}+\sqrt{B}\)\(\le\)\(2\sqrt{\frac{A+B}{2}}\)

VP =\(\sqrt{AB}.\left(\sqrt{A}+\sqrt{B}\right)\le\frac{A+B}{2}.2\sqrt{\frac{A+B}{2}}\)

    =>VP2 \(\le4.\frac{\left(A+B\right)^3}{4}=\left(A+B\right)^3\left(3\right)\)

Tu (2),(3) => DPCM

@Cool Kid:\(a^3+b^3+c^3+3abc\ge\Sigma ab\sqrt{2\left(a^2+b^2\right)}\)\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)Hay một BĐT mạnh (và đẹp:v) hơn là: \(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{2\left(a+b\right)}\)Ta cần chứng...
Đọc tiếp

@Cool Kid:

\(a^3+b^3+c^3+3abc\ge\Sigma ab\sqrt{2\left(a^2+b^2\right)}\)

\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)

Hay một BĐT mạnh (và đẹp:v) hơn là: 

\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{2\left(a+b\right)}\)

Ta cần chứng minh: \(VT-VP=\Sigma\frac{\left(a+b-c\right)^2\left(a-b\right)^2}{2\left(a+b\right)}-\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Giả sử \(a\ge c\ge b\) và đặt \(a=b+u+v,c=b+v\)

Bất đẳng thức này đúng theo Cauchy-Schwawrz:

\(VT-VP\ge\frac{4\left(c+a-b\right)^2\left(c-a\right)^2}{4\left(a+b+c\right)}-\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Last inequality is: https://imgur.com/tRsHOfr (mình không gửi ảnh được nên gửi link vậy!)

Done!

0