K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2019

Hỏi đáp Toán

19 tháng 7 2020

bạn ơi, từ |x1| +2|x2| = 8 sao suy ra được bước dưới thế ạ?

bạn bình phương lên hay sao ạ? mình vẫn chưa hiểu bình phương của trị cho lắm, bạn có thể giúp mình được không?

a: Phương trình hoành độ giao điểm là:

\(x^2-mx+1=0\)

\(\text{Δ}=\left(-m\right)^2-4\cdot1\cdot1=m^2-4\)

Để (P) và (d) cắt nhau tại 2 điểm phân biệt thi Δ>0

=>(m-2)(m+2)>0

hay \(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)

b: Áp dụng hệ thức Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=1\end{matrix}\right.\)

Theo đề, ta có:

\(x_1x_2\left(x_1+x_2\right)-x_1x_2=3\)

\(\Leftrightarrow m-1=3\)

hay m=4

loading...  loading...  loading...  loading...  loading...  loading...  loading...  

a: PTHDGĐ là:

x^2-(m-1)x-(m^2+1)=0

a*c=-m^2-1<0

=>(P) luôn cắt (d) tại hai điểm phân biệt nằm về hai phía của trục Oy

b: |x1|+|x2|=2căn 2

=>x1^2+x2^2+2|x1x2|=8

=>(x1+x2)^2-2x1x2+2|x1x2|=8

=>(m-1)^2-2(-m^2+1)+2|-m^2-1|=8

=>(m-1)^2+2(m^2+1)+2(m^2+1)=8

=>m^2-2m+1+4m^2+4=8

=>5m^2-2m-3=0

=>5m^2-5m+3m-3=0

=>(m-1)(5m+3)=0

=>m=1 hoặc m=-3/5

10 tháng 2 2021

kiểm tra lại đề nhé lỗi quá

29 tháng 12 2023

a: Phương trình hoành độ giao điểm là:

\(x^2=2mx-m^2+4\)

=>\(x^2-2mx+m^2-4=0\)

\(\Delta=\left(-2m\right)^2-4\left(m^2-4\right)=4m^2-4m^2+16=16>0\)

=>(P) luôn cắt (d) tại hai điểm phân biệt

b: Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-4\end{matrix}\right.\)

Sửa đề: \(x_1^2-3x_1+x_2^2-3x_2=4\)

=>\(\left(x_1^2+x_2^2\right)-3\left(x_1+x_2\right)=4\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2-3\left(x_1+x_2\right)=4\)

=>\(\left(2m\right)^2-2\cdot\left(m^2-4\right)-3\cdot2m=4\)

=>\(4m^2-2m^2+8-6m-4=0\)

=>\(2m^2-6m+4=0\)

=>\(m^2-3m+2=0\)

=>(m-1)(m-2)=0

=>\(\left[{}\begin{matrix}m-1=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)

7 tháng 11 2017

Bài 3 làm sao v ạ?

1) Phương trình hoành độ giao điểm của (P) và (d) là:

\(-x^2=mx-1\)

\(\Leftrightarrow-x^2-mx+1=0\)

a=-1; b=-m; c=1

Vì ac<0 nên (P) luôn cắt (d) tại hai điểm phân biệt với mọi m

2) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-m\right)}{-1}=-m\\x_1x_2=\dfrac{c}{a}=\dfrac{1}{-1}=-1\end{matrix}\right.\)

Ta có: \(x_1^3+x_2^3=-4\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+4=0\)

\(\Leftrightarrow\left(-m\right)^3-3\cdot\left(-1\right)\cdot\left(-m\right)+4=0\)

\(\Leftrightarrow-m^3-3m+4=0\)

\(\Leftrightarrow m^3+3m-4=0\)

\(\Leftrightarrow m^3-m+4m-4=0\)

\(\Leftrightarrow m\left(m-1\right)\left(m+1\right)+4\left(m-1\right)=0\)

\(\Leftrightarrow\left(m-1\right)\left(m^2+m+4\right)=0\)

\(\Leftrightarrow m-1=0\)

hay m=1

a: PTHĐGĐ là:

x^2+mx-m-2=0(1)

Khi m=2 thì (1) sẽ là

x^2+2x-2-2=0

=>x^2+2x-4=0

=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)

b: Δ=m^2-4(-m-2)

=m^2+4m+8

=(m+2)^2+4>0 với mọi x

=>(d) luôn cắt (P) tại hai điểm phân biệtx

x1^2+x2^2=7

=>(x1+x2)^2-2x1x2=7

=>(-m)^2-2(-m-2)=7

=>m^2+2m+4-7=0

=>m^2+2m-3=0

=>m=-3 hoặc m=1