TÍNH : H= \(\frac{1}{5^2}\)+\(\frac{2}{5^3}\)+........+\(\frac{11}{5^{12}}\)
hic. giúp mk vs T .T .
À thêm 1 tí nhé : Cm H < \(\frac{1}{16}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(A=\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\)
=> \(5A=\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\)
Lấy 5A trừ A theo vế ta có :
5A - A = \(\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{n}{5^n}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\right)\)
4A = \(\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)-\frac{11}{5^{12}}\)
Đặt B = \(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\)
=> 5B = \(1+\frac{1}{5}+...+\frac{1}{5^{10}}\)
Lấy 5B trừ B ta có :
=> 5B - B = \(\left(1+\frac{1}{5}+...+\frac{1}{5^{10}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\right)\)
=> 4B =\(1-\frac{1}{5^{11}}\)
=> B = \(\frac{1}{4}-\frac{1}{5^{11}.4}\)
Khi đó 4A = \(\frac{1}{4}-\frac{1}{5^{11}.4}-\frac{1}{5^{12}}\)
=> A = \(\frac{1}{16}-\left(\frac{1}{5^{11}.16}+\frac{1}{5^{12}.4}\right)< \frac{1}{16}\left(\text{ĐPCM}\right)\)
cậu ơi , mình quên không ghi 1 dữ liệu ạ
n thuộc N
V ậy có cần phải chỉnh sửa ở trong bài làm không ạ?????
\(A=\left(\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}+\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}\right):\frac{1890}{2005}+115\)
\(A=\left(\frac{\frac{3}{2}+1-\frac{3}{4}}{\frac{5}{2}+\frac{5}{3}-\frac{5}{4}}+\frac{\frac{3}{8}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{\frac{-5}{8}+\frac{1}{2}-\frac{5}{11}-\frac{5}{12}}\right):\frac{378}{401}+115\)
\(A=\left(\frac{3.\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}{5.\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}+\frac{-3.\left(\frac{-1}{8}+\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)}{5.\left(\frac{-1}{8}+\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)}\right).\frac{401}{378}+115\)
\(A=\left(\frac{3}{5}+\frac{-3}{5}\right).\frac{401}{378}+115\)
\(A=0.\frac{401}{378}+115=115\)
A = \(\left(\frac{1,5+1-0,75}{2,5+\frac{5}{3}-1,25}+\frac{0,375-0,3+\frac{3}{11}+\frac{3}{12}}{-0,625+0,5-\frac{5}{11}-\frac{5}{12}}\right):\frac{1890}{2005}+115\)
= \(\left(\frac{\frac{3}{2}+\frac{3}{3}-\frac{3}{4}}{\frac{5}{2}+\frac{5}{3}-\frac{5}{4}}+\frac{\frac{3.125}{100}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{-\frac{5.125}{100}+\frac{5}{10}-\frac{5}{11}-\frac{5}{12}}\right):\frac{1890}{2005}+115\)
= \(\left(\frac{3\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}{5\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\right)}+\frac{3\left(\frac{125}{100}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}{-5\left(\frac{125}{100}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}\right):\frac{1890}{2005}+115\)
= \(\left(\frac{3}{5}+-\frac{3}{5}\right):\frac{1890}{2005}+115\)
= 115
a, \(\frac{-5}{7}.\frac{2}{11}+\frac{-5}{7}.\frac{9}{11}.\frac{12}{7}\)
\(=\frac{-5}{7}.\left(\frac{2}{11}+\frac{9}{11}\right)+\frac{12}{7}\)
\(=\frac{-5}{7}.1+\frac{12}{7}=\frac{-5}{7}+\frac{12}{7}=\frac{7}{7}=1\)
\(M=\frac{\frac{3}{8}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{-\frac{5}{8}+\frac{1}{2}-\frac{5}{11}-\frac{5}{12}}\)
\(M=\frac{\frac{3}{8}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{-\frac{5}{8}+\frac{5}{10}-\frac{5}{11}-\frac{5}{12}}\)
\(M=\frac{3\left(\frac{1}{8}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}{-5\left(\frac{1}{8}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}\)
\(M=\frac{3}{-5}=\frac{-3}{5}\)
g) \(6\frac{4}{5}-\left(1\frac{2}{3}+3\frac{4}{5}\right)\)
\(=6\frac{4}{5}-1\frac{2}{3}-3\frac{4}{5}\)
\(=\left(6\frac{4}{5}-3\frac{4}{5}\right)-1\frac{2}{3}\)
\(=\left(6+\frac{4}{5}-3-\frac{4}{5}\right)-1\frac{2}{3}\)
\(=3-\frac{5}{3}=\frac{9}{3}-\frac{5}{3}=\frac{4}{3}\)
h) \(7\frac{5}{9}-\left(2\frac{3}{4}+3\frac{5}{9}\right)\)
\(=7\frac{5}{9}-2\frac{3}{4}-3\frac{5}{9}\)
\(=\left(7\frac{5}{9}-3\frac{5}{9}\right)-2\frac{3}{4}\)
\(=\left(7+\frac{5}{9}-3-\frac{5}{9}\right)-2\frac{3}{4}\)
\(=4-\frac{11}{4}=\frac{16}{4}-\frac{11}{4}=\frac{5}{4}\)
i) \(6\frac{5}{7}-\left(1\frac{3}{4}+2\frac{5}{7}\right)\)
\(=6\frac{5}{7}-1\frac{3}{4}-2\frac{5}{7}\)
\(=\left(6\frac{5}{7}-2\frac{5}{7}\right)-1\frac{3}{4}\)
\(=\left(6+\frac{5}{7}-2-\frac{5}{7}\right)-\frac{7}{4}\)
\(=4-\frac{7}{4}=\frac{16}{4}-\frac{7}{4}=\frac{9}{4}\)
k) \(7\frac{5}{11}-\left(2\frac{3}{7}+3\frac{5}{11}\right)\)
\(=7\frac{5}{11}-2\frac{3}{7}-3\frac{5}{11}\)
\(=\left(7\frac{5}{11}-3\frac{5}{11}\right)-2\frac{3}{7}\)
\(=4-\frac{17}{7}=\frac{28}{7}-\frac{17}{7}=\frac{11}{7}\)
g) Ta có: \(6\frac{4}{5}-\left(1\frac{2}{3}+3\frac{4}{5}\right)\)
\(=\frac{34}{5}-\left(\frac{5}{3}+\frac{19}{5}\right)\)
\(=\frac{34}{5}-\frac{5}{3}-\frac{19}{5}\)
\(=3-\frac{5}{3}=\frac{9}{3}-\frac{5}{3}=\frac{4}{3}\)
h) Ta có: \(7\frac{5}{9}-\left(2\frac{3}{4}+3\frac{5}{9}\right)\)
\(=\frac{68}{9}-\frac{11}{4}-\frac{32}{9}\)
\(=4-\frac{11}{4}=\frac{16}{4}-\frac{11}{4}=\frac{5}{4}\)
i) Ta có: \(6\frac{5}{7}-\left(1\frac{3}{4}+2\frac{5}{7}\right)\)
\(=6+\frac{5}{7}-1-\frac{3}{4}-2-\frac{5}{7}\)
\(=3-\frac{3}{4}=\frac{9}{4}\)
k) Ta có: \(7\frac{5}{11}-\left(2\frac{3}{7}+3\frac{5}{11}\right)\)
\(=7+\frac{5}{11}-2-\frac{3}{7}-3-\frac{5}{11}\)
\(=2-\frac{3}{7}=\frac{11}{7}\)
a) MC :24
\(\frac{1}{3}+\frac{3}{8}-\frac{7}{12}=\frac{1\times8+3\times3-7\times2}{24}=\frac{3}{24}=\frac{1}{8}\)
b)MC : 56
\(\frac{3}{14}+\frac{5}{8}-\frac{1}{2}=\frac{3\times4+5\times7-1\times28}{56}=\frac{19}{56}\)
c) MC: 36
\(\frac{1}{4}-\frac{2}{3}-\frac{11}{18}=\frac{1\times9-2\times12-11\times2}{36}=\frac{-37}{36}\)
d) MC: 312
\(\frac{1}{4}+\frac{5}{12}-\frac{1}{13}-\frac{7}{8}=\frac{1\times78+5\times26-1\times24-7\times39}{312}=\frac{-89}{312}\)
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7
h.3x - 2/6 - 5 = 3 - 2(x + 7)/4
<=> 3x - 2 - 30/6 = 3 - 2(x + 7)/4
<=> 3x - 32/6 = 3 - 2x - 14/4
<=> 3x - 32/6 = -2x - 11/4
<=> 6x - 64/12 = -6x - 33/12
<=> 6x - 64 = -6x - 33 <=> 12x = 31 <=> x = 31/12
\(\Rightarrow5H=\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\)
\(\Rightarrow5H-H=\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{11}{5^{12}}\right)\)
\(\Rightarrow4H=\frac{1}{5}+\frac{1}{5^2}+..+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)
Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}\)
\(\Rightarrow5A=1+\frac{1}{5}+...+\frac{1}{5^{10}}\)
\(\Rightarrow5A-A=\left(1+..+\frac{1}{5^{10}}\right)-\left(\frac{1}{5}+...+\frac{1}{5^{11}}\right)\)
\(\Rightarrow4A=1-\frac{1}{5^{11}}\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{4.5^{11}}\)
\(\Rightarrow4H=\frac{1}{4}-\frac{1}{4.5^{11}}-\frac{11}{5^{12}}\)
\(\Rightarrow H=\frac{1}{16}-\frac{1}{4^2.5^{11}}-\frac{11}{4.5^{12}}\)
Ta có : \(5H=\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\)
\(\Rightarrow4H=\left(\frac{1}{5}+\frac{2}{5^2}+...+\frac{11}{5^{11}}\right)-\left(\frac{1}{5^2}+\frac{2}{5^3}+...+\frac{11}{5^{12}}\right)=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{11}}+\frac{11}{5^{12}}\)
\(\Rightarrow20H=1+\frac{1}{5}+...+\frac{1}{5^{10}}+\frac{11}{5^{11}}\)
\(\Rightarrow16H=20H-4H=1+\frac{10}{5^{11}}-\frac{11}{5^{12}}\Leftrightarrow H=\frac{1+\frac{10}{5^{11}}-\frac{11}{5^{12}}}{16}.\)