Ae giúp mình với đang ôn thi vào lớp 10
Tìm tất cả các số nguyên tố a,b,c sao cho 1/a +1/b +1/c =1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
#include <bits/stdc++.h>
using namespace std;
long long x,n,i;
int main()
{
cin>>n;
for (i=0; i<=n; i++)
{
x=int(sqrt(i));
if (x*x==i) cout<<i<<" ";
}
return 0;
return 0;
}
\(A=\frac{1-6n}{2n-3}=\frac{-6n+9-8}{2n-3}=-3+\frac{-8}{2n-3}\)
Để \(A\in Z\Rightarrow\frac{-8}{2n-3}\in Z\)
\(\Rightarrow-8⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(-8\right)\)
\(\Rightarrow2n+3\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
Vì \(2n+3\)là số lẻ
\(\Rightarrow2n+3\in\left\{1;-1\right\}\)
\(\Rightarrow2n\in\left\{-2;-4\right\}\)
\(\Rightarrow n\in\left\{-1;-2\right\}\)
Vậy...
A=\(\frac{1-6n}{2n-3}\)
=\(\frac{-6n+9-8}{2n-3}\)
= \(-3+\frac{-8}{2n-3}\)
để \(A\inℤ\Leftrightarrow\frac{-8}{2n-3}\inℤ\)
\(\Leftrightarrow-8⋮2n+3\)
\(\Leftrightarrow2n+3\inƯ\left(-8\right)\)
MÀ Ư(-8)=\(\hept{\pm1;\pm2;\pm4;\pm8}\)
VÌ 2n+3 là số lẻ nên ta có bảng:
2n+3 | 1 | -1 |
2n | -2 | -4 |
n | -1 | -2 |
vậy n\(\in\hept{-1;-2}\)
thì A là 1 số nguyên
áp dụng công thức \(\frac{a}{b}=\frac{1}{k+1}+\frac{a-r}{b\left(k-1\right)}\)(với k là thương của a chia cho b;r là số dư )
Vì a,b,c có vai trò bình đẳng
nên giả sử \(a\le b\le c\)
=> \(\frac{1}{a}\ge\frac{1}{b}\ge\frac{1}{c}\)
Mà \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)
=> \(1\le\frac{3}{a}\)
=> \(a\le3\)
Mà a là số nguyên tố
=>\(a\in\left\{2;3\right\}\)
+ a=2
\(\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\)
=> \(\frac{1}{2}\le\frac{2}{b}\)=> \(b\le4\)=> \(b\in\left\{2;3\right\}\)
Thay vào ta được c=6(loại)
+ a=3
=> \(\frac{2}{3}\le\frac{2}{b}\)=> \(b\le3\)=> \(b\in\left\{2;3\right\}\)
Thay vào được c=3
Vậy a=b=c=3