cho tam giác ABC có AB=30 AC=40 BC=50
CM
a cm tam giác ABC vuông
tính sin B, tgC và số đo góc B và C
vẽ đường cao AH tính AH,BH,HC
vẽ đường phan giác AD của tam giác ABC, tính đọ dài DB, DC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có ab\(^2\)+ ac\(^2\) = 90 + 160
=250
lại có bc\(^2\) =250
\(\Rightarrow\)ab\(^2\) + ac\(^2\) = bc\(^2\) ( = 250 )
\(\Rightarrow\)tam giác abc vuông tại a
\(\sin b\) = \(\frac{ac}{bc}\) = \(\frac{40}{50}\) = \(\frac{4}{5}\)
\(\tan c\)= \(\frac{ab}{ac}\) = \(\frac{30}{40}\) = \(\frac{3}{4}\)
\(\widehat{b}\)\(\approx\) 53.1
\(\widehat{c}\) \(\approx\) 36.9
áp dụng htl vào tam giác abc vuông tại a có
ah * bc = ab * ac
\(\Rightarrow\)ah = \(\frac{ab\cdot ac}{bc}\) =24(dvdd)
áp dụng đ/lí pytago vào tam giác ahb vuông tại h có
bh\(^2\)= ab\(^2\)- ah\(^2\)=324
\(\Rightarrow\)bh = \(\sqrt{324}\)= 18 (dvdd)
áp dụng đ/lí pytago vào tam giác ahc vuông tại h có
ch\(^2\)= ac\(^2\)-ah\(^2\) = 1024
\(\Rightarrow\)ch=\(\sqrt{1024}\)=32(dvdd)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{HBA}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
c: BA/BH=BC/BA
=>BA^2=BH*BC
Bài 2:
a) Xét tam giác BDC vuông tại C có:
\(DC^2+BC^2=DB^2\)
\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)
\(\Rightarrow BD=10\left(cm\right)\)
b) tam giác BDA nhé
Xét tamg giác ADH và tam giác BDA có:
\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)
c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)
\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )
\(\Rightarrow AD^2=BD.DH\)
d) Xét tan giác AHB và tam giác BCD có:
\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)
( góc= 45 độ bạn tự cm nhé )
e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)
\(\Rightarrow AD.AB=AH.BD\)
\(\Rightarrow AH=4,8\left(cm\right)\)
Dùng Py-ta-go làm nốt tính DH
Bài 1
a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
Thay AB=3cm, AC=4cm
\(\Rightarrow3^2+4^2=BC^2\)
<=> 9+16=BC2
<=> 25=BC2
<=> BC=5cm (BC>0)
a) xét △ ABC có: \(AB^2+AC^2=30^2+40^2=2500\)
\(BC^2=50^2=2500\)
=> △ ABC vuông tại A
b) xét △ ABC có: \(sinB=\) \(\frac{AC}{BC}=\frac{40}{50}=0,8\) => \(\widehat{B}\approx53^0\)
\(tanB=\frac{AB}{BC}=\frac{30}{50}=0,6\) => \(\widehat{B}\approx31^0\)
vẽ đường cao AH.
xét △ ABH có: sin B = \(\frac{AH}{AB}\)=>AH=sinB.AB=0,8.30=24cm
xét △ ABH có: \(BH=\sqrt{AB^2-AH^2}=\) 18cm
theo tỉ số lượng giác trong △ ABC có:
\(AH^2=BH.HC=>HC=\frac{AH^2}{BH}\) = 32cm