K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
20 tháng 5 2019

$A$ và $B$ là 2 điểm thì làm sao mà có giá trị $A^2$ và $B^2$ được bạn? Bạn xem lại đề.

29 tháng 4 2021

Xét phương trình hoành độ giao điểm của (d) và (P) ta có:

       x2 = 2x + m - 1

<=> x2 - 2x - m + 1 = 0

\(\Delta'=\left(-1\right)^2-\left(-m-1\right)=1+m+1=2+m\)

Để pt có 2 nghiệm phân biệt <=> \(\Delta'>0\)  <=> 2 + m > 0  <=> m > -2

Theo hệ thức Viét, ta có:  \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1.x_2=-m+1\end{matrix}\right.\)

Theo đề bài:  x13- x2+ x1.x= 4

<=> (x+ x2)3 - 3x1.x(x+ x2) + x1.x= 4

Thay: 23 - 3(-m + 1). 2 + (-m + 1) = 4

<=> 8 + 6m - 6 - m + 1  - 4 = 0

<=> -1 + 5m = 0

<=> m = \(\dfrac{1}{5}\)

Vậy để m = \(\dfrac{1}{5}\) thì x1- x2+ x1.x= 4

 

 

 

1 tháng 5 2021

sai rồi bn: x13+x23=(x+ x2)3 - 3x1.x(x+ x2)

a: Thay x=0 và y=-5 vào (d), ta được:

2(m+1)*0-m^2-4=-5

=>m^2+4=5

=>m=1 hoặc m=-1

b:

PTHĐGĐ là;

x^2-2(m+1)x+m^2+4=0

Δ=(2m+2)^2-4(m^2+4)

=4m^2+8m+4-4m^2-16=8m-12

Để PT có hai nghiệm phân biệt thì 8m-12>0

=>m>3/2

x1+x2=2m+2; x1x2=m^2+4

(2x1-1)(x2^2-2m*x2+m^2+3)=21

=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21

=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21

=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21

=>(2x1-1)(2x2-1)=21

=>4x1x2-2(x1+x2)+1=21

=>4(m^2+4)-2(2m+2)+1=21

=>4m^2+16-4m-4-20=0

=>4m^2-4m-8=0

=>(m-2)(m+1)=0

=>m=2(nhận) hoặc m=-1(loại)

6 tháng 12 2021

a) Để (d) cắt đừờng thẳng (d’).

<=> \(\text{m-1}\ne2.\)

<=> \(m\ne3.\)

b) Để (d) song song với (d’). 

<=> \(m-1=2.\)

<=> \(m=3.\)

Thay x=-1 vào (P), ta được:

y=-2*(-1)^2=-2

Thay x=-1và y=-2 vào (d), ta được:

-(m+1)-m-3=-2

=>-m-1-m-3=-2

=>-2m-4=-2

=>2m+4=2

=>m=-1

22 tháng 5 2021

Xét pt hoành độ gđ của (d) và (P) có:

\(x^2=2x+4m^2-8m+3\)

\(\Leftrightarrow x^2-2x-4m^2+8m-3=0\) (1)

\(\Delta=4-4\left(-4m^2+8m-3\right)\)\(=16m^2-32m+16=16\left(m-1\right)^2\)

Để (P) và (d) cắt nhau tại hai điểm pb khi pt (1) có hai nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow m\ne1\)

Có \(A\in\left(P\right)\Rightarrow y_1=x_1^2\)

\(B\in\left(P\right)\Rightarrow y_2=x_2^2\) , trong đó x1; x2 là hai nghiệm của pt (1)

Theo định lí viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=-4m^2+8m-3\end{matrix}\right.\)

\(y_1+y_2=10\)

\(\Leftrightarrow x_1^2+x_2^2=10\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=10\)

\(\Leftrightarrow4-2\left(-4m^2+8m-3\right)=10\)

\(\Leftrightarrow8m^2-16m=0\) 

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=2\end{matrix}\right.\)(tm)

Vậy...

 

23 tháng 12 2023

a: Thay x=2 và y=-3 vào (d), ta được:

\(2\left(2m-1\right)-2m+5=-3\)

=>\(4m-2-2m+5=-3\)

=>2m+3=-3

=>2m=-6

=>\(m=-\dfrac{6}{2}=-3\)

b: Để (d)//(d') thì \(\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m=3\\-2m\ne-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=\dfrac{3}{2}\\m\ne2\end{matrix}\right.\)

=>m=3/2

Thay m=3/2 vào (d), ta được:

\(y=\left(2\cdot\dfrac{3}{2}-1\right)x-2\cdot\dfrac{3}{2}+5=2x+2\)

loading...

y=2x+2 nên a=2

Gọi \(\alpha\) là góc tạo bởi (d) với trục Ox

\(tan\alpha=2\)

=>\(\alpha\simeq63^026'\)

Bài 1: 

a) Để (d) đi qua A(1;-9) thì

Thay x=1 và y=-9 vào (d), ta được:

\(3m\cdot1+1-m^2=-9\)

\(\Leftrightarrow-m^2+3m+1+9=0\)

\(\Leftrightarrow m^2-3m-10=0\)

\(\Leftrightarrow m^2-5m+2m-10=0\)

\(\Leftrightarrow m\left(m-5\right)+2\left(m-5\right)=0\)

\(\Leftrightarrow\left(m-5\right)\left(m+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m-5=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-2\end{matrix}\right.\)

Vậy: Để (d) đi qua A(1;-9) thì \(m\in\left\{5;-2\right\}\)