K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2019

a.\(\sqrt{2x}+1\le5\)

\(\Leftrightarrow\sqrt{2x}\le4\)

\(\Leftrightarrow2x\le16\)

\(\Leftrightarrow x\le8\)

b.\(\sqrt{x-2}\ge\sqrt{3}\)

\(\Leftrightarrow x-2\ge3\)

\(\Leftrightarrow x\ge5\)

29 tháng 6 2019

\(A=\sqrt{1-x}+\sqrt{x+1}\)

\(A^2=\left(\sqrt{1-x}\cdot1+\sqrt{x+1}\cdot1\right)^2\)

Áp dụng BĐT Bunhiacospki ta có:
\(A^2\le\left(1^2+1^2\right)\left(1-x+1+x\right)\)

\(A^2\le4\)

\(A\le2\)

\(A_{max}=2\Leftrightarrow x=0\)

E ms tìm dc MAX thôi ah

NV
29 tháng 6 2019

ĐKXĐ: ....

a/ \(A\le\sqrt{2\left(1-x+1+x\right)}=2\Rightarrow A_{max}=2\) khi \(x=0\)

\(A\ge\sqrt{1-x+1+x}=\sqrt{2}\Rightarrow A_{min}=\sqrt{2}\) khi \(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

b/ \(B\le\sqrt{2\left(x-2+6-x\right)}=2\sqrt{2}\Rightarrow B_{max}=2\sqrt{2}\) khi \(x=4\)

\(B\ge\sqrt{x-2+6-x}=2\Rightarrow B_{min}=2\) khi \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

c/ \(A^2=\left(2x+3y\right)^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\)

\(\Rightarrow A^2\le\left(2+3\right)\left(2x^2+3y^2\right)\le5.5=25\)

\(\Rightarrow-5\le A\le5\)

\(A_{max}=5\) khi \(x=y=1\)

\(A_{min}=-5\) khi \(x=y=-1\)

29 tháng 8 2019

\(=\sqrt{x-1+2\sqrt{2\left(x-3\right)}}+\sqrt{x-1-2\sqrt{2\left(x-3\right)}}\)

\(=\sqrt{x-1+2\sqrt{2}.\sqrt{\left(x-3\right)}-2+2}+\sqrt{x-1-2\sqrt{2}.\sqrt{\left(x-3\right)}-2+2}\)

\(=\sqrt{x-3+2\sqrt{2}.\sqrt{\left(x-3\right)}+2}+\sqrt{x-3-2\sqrt{2}.\sqrt{\left(x-3\right)}+2}\)

\(=\sqrt{\left(\sqrt{x-3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{x-3}-\sqrt{2}\right)^2}\)

\(=\left|\sqrt{x-3}+\sqrt{2}\right|+\left|\sqrt{x-3}-\sqrt{2}\right|\)

\(=\sqrt{x-3}+\sqrt{2}+\sqrt{2}-\sqrt{x-3}\left(3\le x\le5\right)\)

\(=2\sqrt{2}\)

2 tháng 9 2020

Bạn xem lại đề câu b và c nhé !

a) \(\sqrt{x^2+2x+4}\ge x-2\) \(\left(ĐK:x\ge2\right)\)

\(\Leftrightarrow x^2+2x+4>x^2-4x+4\)

\(\Leftrightarrow6x>0\Leftrightarrow x>0\) kết hợp với ĐKXĐ

\(\Rightarrow x\ge2\) thỏa mãn đề.

d) \(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\)

\(ĐKXĐ:x\ge2,y\ge3,z\ge5\)

Pt tương đương :

\(\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5-6\sqrt{z-5}+9\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}=1\\\sqrt{y-3}=2\\\sqrt{z-5}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=7\\z=14\end{cases}}\) ( Thỏa mãn ĐKXĐ )

e) \(\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\) (1)

\(ĐKXĐ:x\ge0,y\ge1,z\ge2\)

Phương trình (1) tương đương :

\(x+y+z-2\sqrt{x}-2\sqrt{y-1}-2\sqrt{z-2}=0\)

\(\Leftrightarrow\left(x-2\sqrt{x}+1\right)+\left(y-1-2\sqrt{y-1}+1\right)+\left(z-2-2\sqrt{z-2}+1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2+\left(\sqrt{y-1}-1\right)^2+\left(\sqrt{z-2}-1\right)^2=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x}=1\\\sqrt{y-1}=1\\\sqrt{z-2}=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\\z=3\end{cases}}\)( Thỏa mãn ĐKXĐ )

28 tháng 7 2016

Bài 2

\(P=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{12+2\sqrt{12}+1}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{5-\sqrt{12}-1}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{4-\sqrt{12}}}}{\sqrt{6}-\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{3-2\sqrt{3}+1}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{2\sqrt{3+\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)

\(=\frac{\sqrt{2}\cdot\sqrt{2}\cdot\sqrt{2+\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)

\(=\frac{\sqrt{2}\cdot\sqrt{4+2\sqrt{3}}}{\sqrt{2}\left(\sqrt{3}+1\right)}\)

\(=\frac{\sqrt{3+2\sqrt{3}+1}}{\left(\sqrt{3}+1\right)}\)

=\(\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\left(\sqrt{3}+1\right)}\)

\(=\frac{\sqrt{3}+1}{\left(\sqrt{3}+1\right)}=1\)

Vậy P là một số nguyên

NV
24 tháng 2 2020

\(P\sqrt{2}=\sqrt{2x-1+14\sqrt{2x-1}+49}+\sqrt{2x-1+6\sqrt{2x-1}+9}\)

\(=\sqrt{\left(\sqrt{2x-1}+7\right)^2}+\sqrt{\left(\sqrt{2x-1}+3\right)^2}\)

\(=\left|\sqrt{2x-1}+7\right|+\left|\sqrt{2x-1}+3\right|\)

\(=2\sqrt{2x-1}+10\)

Chỉ tính được đến đây, chắc bạn ghi nhầm đề, muốn ra số cụ thể thì trước \(7\sqrt{2x-1}\) hoặc \(3\sqrt{2x-1}\) phải là dấu "-" chứ ko thể là dấu "+"

25 tháng 2 2017

Bài 1:

\(A=\sqrt{\frac{a+\sqrt{a^2-b}}{2}}+\sqrt{\frac{a-\sqrt{a^2-b}}{2}}=B+C\)

\(B=\sqrt{\frac{\left(a+\sqrt{b}\right)+2\sqrt{\left(a-\sqrt{b}\right)\left(a+\sqrt{b}\right)}+\left(a-\sqrt{b}\right)}{4}}=\frac{1}{2}.\sqrt{\left[\sqrt{\left(a+\sqrt{b}\right)}+\sqrt{\left(a-\sqrt{b}\right)}\right]^2}\)

\(B=\frac{1}{2}\left[\sqrt{a+\sqrt{b}}+\sqrt{a-\sqrt{b}}\right]\)(1)

\(C=\sqrt{\frac{a-\sqrt{a^2-b}}{2}}=\frac{1}{2}.!\left[\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}\right]!\) do \(a\ge\sqrt{b}\ge0\) \(\Rightarrow C=\frac{1}{2}\left[\sqrt{a+\sqrt{b}}-\sqrt{a-\sqrt{b}}\right]\)(2)

(1) cộng (2)=> dpcm

25 tháng 2 2017

dấu ![ là gt tuyệt đối hả bn