K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(a,x^4+64=\left(x^4+16x^2+64\right)\)

\(=\left(x^2+8\right)^2-\left(4x\right)^2\)

\(=\left(x^2-4x+8\right).\left(x^2+4x+8\right)\)

\(b,x^5+x+1\)

\(=\left(x^2+x+1\right).\left(x^3-x^2+1\right)\)

...

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

a. $6x^2-11x=x(6x-11)$
b. $x^7+x^5+1=(x^7-x)+(x^5-x^2)+x+x^2+1$

$=x(x^6-1)+x^2(x^3-1)+(x^2+x+1)$
$=x(x^3-1)(x^3+1)+x^2(x^3-1)+(x^2+x+1)$
$=(x^3-1)(x^4+x+x^2)+(x^2+x+1)$

$=(x-1)(x^2+x+1)(x^4+x^2+x)+(x^2+x+1)$
$=(x^2+x+1)[(x-1)(x^4+x^2+x)+1]$

$=(x^2+x+1)(x^5-x^4+x^3-x+1)$

AH
Akai Haruma
Giáo viên
7 tháng 7 2021

c.

$x^8+x^4+1=(x^4)^2+2.x^4+1-x^4$

$=(x^4+1)^2-(x^2)^2$

$=(x^4+1-x^2)(x^4+1+x^2)$

$=(x^4+1-x^2)(x^4+2x^2+1-x^2)$

$=(x^4-x^2+1)[(x^2+1)^2-x^2]$

$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$

d.

$x^3-5x+8-4=x^3-5x+4$

$=x^3-x^2+x^2-x-(4x-4)$

$=x^2(x-1)+x(x-1)-4(x-1)=(x-1)(x^2+x-4)$

e.

$x^5+x^4+1=(x^5-x^2)+(x^4-x)+x^2+x+1$

$=x^2(x^3-1)+x(x^3-1)+x^2+x+1$

$=(x^3-1)(x^2+x)+(x^2+x+1)$
$=(x-1)(x^2+x+1)(x^2+x)+(x^2+x+1)$

$=(x^2+x+1)[(x-1)(x^2+x)+1]$

$=(x^2+x+1)(x^3-x+1)$

 

 

a: \(x^4+4=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)

b: \(x^8+x^7+1\)

\(=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)

c: \(x^8+x^4+1\)

\(=\left(x^8+2x^4+1\right)-x^4\)

\(=\left(x^4-x^2+1\right)\cdot\left(x^4+x^2+1\right)\)

\(=\left(x^4-x^2+1\right)\left(x^2+1-x\right)\left(x^2+1+x\right)\)

 

26 tháng 8 2021

a)\(x^4+4\\ =\left(x^2\right)^2+4x^2+4-4x^2\\ =\left[\left(x^2\right)^2+4x^2+4\right]-\left(2x\right)^2\\ =\left(x^2+2\right)^2-\left(2x\right)^2\\ =\left(x^2+2+2x\right)\left(x^2+2-2x\right)\)

 

a: \(A=x^3y-12xy-x^2y\)

\(=xy\cdot x^2-xy\cdot12-xy\cdot x\)

\(=xy\left(x^2-x-12\right)\)

\(=xy\left(x^2-4x+3x-12\right)\)

\(=xy\left[x\left(x-4\right)+3\left(x-4\right)\right]\)

\(=xy\left(x-4\right)\left(x+3\right)\)

c: \(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-120\)

=(x+1)(x+4)(x+2)(x+3)-120

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-120\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)+24-120\)

\(=\left(x^2+5x\right)^2+10\left(x^2+5x\right)-96\)

\(=\left(x^2+5x+16\right)\left(x^2+5x-6\right)\)

\(=\left(x^2+5x+16\right)\left(x+6\right)\left(x-1\right)\)

d: \(D=x^5-x^4+x^2-1\)

\(=\left(x^5-x^4\right)+\left(x^2-1\right)\)

\(=x^4\left(x-1\right)+\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^4+x+1\right)\)

8 tháng 1 2024

s không có câu b ạ

 

12 tháng 7 2023

\(a,=\left(5x^3+10x\right)+\left(x^4-4\right)\\ =5x\left(x^2+2\right)+\left(x^2+2\right)\left(x^2-2\right)\\ =\left(x^2+2\right)\left(x^2+5x-2\right)\\ b,=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left[\left(x+y\right)^2-z\left(x+y\right)+z^2\right]-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+2xy+y-xz-yz+z^2-3xy\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(c,=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\\ d,=\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^4+x^3+x^2\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\\ e,=\left(x^{10}+x^9+x^8\right)-\left(x^9+x^8+x^7\right)+\left(x^7+x^6+x^5\right)-\left(x^6+x^5+x^4\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\\ =\left(x^2+x+1\right)\left(x^{10}-x^7+x^5-x^4+x^3-x+1\right)\)

a: =x^4+2x^2+5x^3+10x-2x^2-4

=(x^2+2)(x^2+5x-2)

b; =(x+y)^3+z^3-3xy(x+y)-3xyz

=(x+y+z)*(x^2+2xy+y^2-xz-yz+z^2)-3xy(x+y+z)

=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)

c: =x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1

=(x^2+x+1)(x^6-x^5+x^3-x^2+1)

18 tháng 7 2021

a) \(x^2-2x-4y^2-4y=\left(x^2-4y^2\right)-\left(2x+4y\right)=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)=\left(x+2y\right)\left(x-2y-2\right)\)

b) \(x^3+2x^2+2x+1=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)=\left(x+1\right)\left(x^2-x+1+2x\right)=\left(x+1\right)\left(x^2+x+1\right)\)

c) \(x^3-4x^2+12x-27=x^3-3x^2-x^2+3x+9x-27=x^2\left(x-3\right)-x\left(x-3\right)+9\left(x-3\right)=\left(x-3\right)\left(x^2-x+9\right)\)

d) \(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)\left[a^3+a^2-2a^2+2\right]=a^2\left(a+1\right)\left[a^2\left(a+1\right)-2\left(a-1\right)\left(a+1\right)\right]=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)

a) Ta có: \(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

b) Ta có: \(x^3+2x^2+2x+1\)

\(=\left(x^3+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2+x+1\right)\)

27 tháng 10 2023

a,

\(A=4(x-2)(x+1)+(2x-4)^2+(x+1)^2\\=[2(x-2)]^2+2\cdot2(x-2)(x+1)+(x+1)^2\\=[2(x-2)+(x+1)]^2\\=(2x-4+x+1)^2\\=(3x-3)^2\)

Thay $x=\dfrac12$ vào $A$, ta được:

\(A=\Bigg(3\cdot\dfrac12-3\Bigg)^2=\Bigg(\dfrac{-3}{2}\Bigg)^2=\dfrac94\)

Vậy $A=\dfrac94$ khi $x=\dfrac12$.

b,

\(B=x^9-x^7-x^6-x^5+x^4+x^3+x^2-1\\=(x^9-1)-(x^7-x^4)-(x^6-x^3)-(x^5-x^2)\\=[(x^3)^3-1]-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1)-x^4(x^3-1)-x^3(x^3-1)-x^2(x^3-1)\\=(x^3-1)(x^6+x^3+1-x^4-x^3-x^2)\\=(x^3-1)(x^6-x^4-x^2+1)\)

Thay $x=1$ vào $B$, ta được:

\(B=(1^3-1)(1^6-1^4-1^2+1)=0\)

Vậy $B=0$ khi $x=1$.

$Toru$

AH
Akai Haruma
Giáo viên
7 tháng 9 2021

Lời giải:
a.

$x^8+x^4+1=(x^4)^2+2x^4+1-x^4$
$=(x^4+1)^2-(x^2)^2=(x^4+1-x^2)(x^4+1+x^2)$

$=(x^4+1-x^2)[(x^2+1)^2-x^2]$

$=(x^4-x^2+1)(x^2+1-x)(x^2+1+x)$

b. 

$x^{12}-3x^6-1=(x^6-\frac{3}{2})^2-\frac{13}{4}$

$=(x^6-\frac{3}{2}-\frac{\sqrt{13}}{2})(x^6-\frac{3}{2}+\frac{\sqrt{13}}{2})$

c.

$3x^4+10x^2-25=(3x^4+15x^2)-(5x^2+25)$

$=3x^2(x^2+5)-5(x^2+5)=(x^2+5)(3x^2-5)$

$=(x^2+5)(\sqrt{3}x-\sqrt{5})(\sqrt{3}x+\sqrt{5})$

c.

$x^2-5y^2-y^4+2xy-9$

$=(x^2+2xy+y^2)-(y^4+6y^2+9)$
$=(x+y)^2-(y^2+3)^2$
$=(x+y+y^2+3)(x+y-y^2-3)$

 

 

7 tháng 9 2021

\(a,x^8+x^4+1\\ =\left(x^8+2x^4+1\right)-x^4\\ =\left(x^4+1\right)^2-x^4\\ =\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)\\ b,x^{12}-3x^6-1\\ =\left(x^{12}-2x^6+1\right)-x^6-2\\ =\left(x^6-1\right)^2-x^6-2\\ =\left(x^6-x^3-1\right)\left(x^6+x^3-1\right)-2???\\ c,3x^4+10x^2-25\\ =4x^4-\left(x^4-10x^2+25\right)\\ =4x^4-\left(x^2-5\right)^2\\ =\left(2x^2-x^2+5\right)\left(2x^2+x^2-5\right)\\ =\left(x^2+5\right)\left(3x^2-5\right)\\ d,x^2-5y^2-y^4+2xy-9\\ =\left(x^2+2xy+y^2\right)-\left(y^4+6y^2+9\right)\\ =\left(x+y\right)^2-\left(y^2+3\right)^2\\ =\left(x+y+y^2+3\right)\left(x+y-y^2-3\right)\)

24 tháng 8 2021

a) \(40x^4-10x^2=10x^2\left(4x^2-1\right)=10x^2\left(2x-1\right)\left(2x+1\right)\)

b) \(16x^4-20x^2-y^2-5y=\left(4x^2-\dfrac{5}{2}\right)^2-\left(y-\dfrac{5}{2}\right)^2=\left(4x^2-\dfrac{5}{2}-y+\dfrac{5}{2}\right)\left(4x^2-\dfrac{5}{2}+y-\dfrac{5}{2}\right)=\left(4x^2-y\right)\left(4x^2+y-5\right)\)c)\(64a^2-9b^2-16a+1=\left(8a-1\right)^2-9b^2=\left(8a-1-3b\right)\left(8a-1+3b\right)\)d) \(5x^2+23x-10=5\left(x-\dfrac{2}{5}\right)\left(x+5\right)\)

a: \(40x^4-10x^2\)

\(=10x^2\left(4x^2-1\right)\)

\(=10x^2\cdot\left(2x-1\right)\left(2x+1\right)\)

b: \(16x^4-20x^2-y^2-5y\)

\(=\left(4x^2-y\right)\left(4x^2+y\right)-5\left(4x^2+y\right)\)

\(=\left(4x^2+y\right)\left(4x^2-y-5\right)\)

c: Ta có: \(64a^2-9b^2-16a+1\)

\(=\left(8a-1\right)^2-9b^2\)

\(=\left(8a-1-3b\right)\left(8a-1+3b\right)\)

d: Ta có: \(5x^2+23x-10\)

\(=5x^2+25x-2x-10\)

\(=\left(x+5\right)\left(5x-2\right)\)

17 tháng 3 2017