K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(B\left(x\right)=x^2+2x+2=0\)

\(B\left(x\right)=\left(x+1\right)^2+1\)

Vì \(\left(x+1\right)^2\ge0\)

\(B\left(x\right)\ge1>0\)

Vậy...

20 tháng 5 2021

\(x^2-3x-4=0\)

\(< =>x^2+x-4x-4=0\)

\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)

\(< =>\left(x-4\right)\left(x+1\right)=0\)

\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)

20 tháng 5 2021

\(2x^3-x^2-2x+1=0\)

\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)

\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)

\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)

\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)

12 tháng 4 2022

\(f\left(-2\right)=0\)

\(=>2.\left(-2\right)+b=0\)

\(=>-4+b=0 =>b=4\)

12 tháng 4 2022

phần b nữa bạn

20 tháng 5 2021

\(2x^2+2x+1=0\)

\(< =>4x^2+4x+2=0\)

\(< =>\left(2x\right)^2+2.2x.1+1^2+1=0\)

\(< =>\left(2x+1\right)^2+1=0\)

Do \(\left(2x+1\right)^2\ge0=>\left(2x+1\right)^2+1>0\)

=> pt voo nghieemj

20 tháng 5 2021

\(x^2-6x+15=0\)

\(< =>x^2-2.x.3+9+6=0\)

\(< =>\left(x-3\right)^2+6=0\)

Do \(\left(x-3\right)^2\ge0=>\left(x-3\right)^2+6>0\)

=> da thuc vo nghiem

NV
17 tháng 4 2022

a.

\(P-\left(5x^4-xyz\right)=xy+2x^4-6xyz+654\)

\(\Rightarrow P=5x^4-xyz+xy+2x^4-6xyz+654\)

\(\Rightarrow P=7x^4-7xyz+xy+654\)

b.

\(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

10 tháng 1 2019

1/ a/ Ta có:

\(P\left(2\right)=m.2^2+\left(2m+1\right).2-10=16\)

\(\Leftrightarrow m-3=0\)

\(\Leftrightarrow m=3\)

b/ Theo câu a thì 

\(P\left(x\right)=3x^2+7x-10=0\)

\(\Leftrightarrow\left(3x^2-3x\right)+\left(10x-10\right)=0\)

\(\Leftrightarrow3x\left(x-1\right)+10\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(3x+10\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{10}{3}\end{cases}}\)

10 tháng 1 2019

2/ Tương tự a phân tích nhân tử hộ thôi nha

a/ \(1-5x=0\)

b/ \(x^2\left(x+2\right)=0\)

c/ \(\left(x-1\right)\left(2x-3\right)=0\)

d/ \(\left(x-2\right)^2+4x^{2018}\ge0\) vì dấu = không xảy ra nên đa thức vô nghiệm

a: A(x)=2x^3+x^2+4x+1

B(x)=-2x^3+x^2+3x+2

b: M(x)=A(x)+B(x)

=2x^3+x^2+4x+1-2x^3+x^2+3x+2

=2x^2+7x+3

c: M(x)=0

=>2x^2+7x+3=0

=>2x^2+6x+x+3=0

=>(x+3)(2x+1)=0

=>x=-3 hoặc x=-1/2

Ta có p(x)=0

Mà P(x)=|A(x)| + |B(x)| - |C(x)| - 1

\(\Rightarrow\)/2x-2/+/x+1/-/2-x/-1=0

\(\Rightarrow\)2x-2+x+1-2-x-1=0

\(\Rightarrow\)2x-2=0

\(\Rightarrow\)x=1

Vậy nghiệm của đa thức P(x)=1

 

28 tháng 3 2023

`a, A(x) = 2x^3 + x - 3x^2 - 2x^3 - 1 + 3x^2`

`= (2x^3-2x^3) +(-3x^2+ 3x^2) + x-1`

`= x-1`

Bậc của đa thức : `1`

`b,` Ta có ` A(x)= x-1=0`

`x-1=0`

`=>x=0+1`

`=>x=1`

 

28 tháng 3 2023

a) \(A\left(x\right)=2x^3+x-3x^2-2x^3-1+3x^2\)

\(A\left(x\right)=\left(2x^3-2x^3\right)-\left(3x^2-3x^2\right)+x-1\)

\(A\left(x\right)=x-1\)

Đa thức có bật 1

b) \(x-1=0\)

\(\Rightarrow x=1\)

Vậy đa thức có nghiệm là 1

 

30 tháng 6 2021

\(a.\)

\(f\left(x\right)=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow x=2\)

\(b.\)

\(g\left(x\right)=2x-4+x^2-x+6\)

\(g\left(x\right)=x^2+x+2=\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}\)

PTVN