Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1
a, P(x)=\(5x^2-2x^4+2x^3+3\)
\(P\left(x\right)=-2x^4+2x^3+5x^2+3\)
\(Q\left(x\right)=2x^4-5x^2-x+1-2x^3\)
\(Q\left(x\right)=2x^4-2x^3-5x^2-x+1\)
b, Ta có A(x)=P(x)+Q(x)
thay số A(x)=\(\left(-2x^4+2x^3+5x^2+3\right)+\left(2x^4-2x^3-5x^2-x+1\right)\)
=\(-2x^4+2x^3+5x^2+3+2x^4-2x^3-5x^2-x+1\)
\(=-x+4\)
c, A(x)=0 khi
\(-x+4=0\)
\(x=4\)
vậy no của đa thức là 4
câu 2
tự vẽ hình nhé
a, xét \(\Delta\) ABC cân tại A có AD là pg
=> AD vừa là dg cao vừa là đg trung tuyến ( t/c trong tam giác cân )
xét \(\Delta\) ADB vg tại D ( áp dụng định lí Py ta go trong tam giác vg ) có
\(AB^2=BD^2+AD^2\\ \Rightarrow BD^2=9\Rightarrow BD=3\)
Ta có D là trung đm của BC ( AD là đg trung tuyến ứng vs BC)
=> BD=CD=\(\dfrac{1}{2}BC\)
=> BC= 6cm
câu b đang nghĩ
a/ Khi f (x) = 0
=> \(x^2-5x+4=0\)
=> \(x^2-x-4x+4=0\)
=> \(\left(x^2-x\right)-\left(4x-4\right)=0\)
=> \(x\left(x-1\right)-4\left(x-1\right)=0\)
=> \(\left(x-1\right)\left(x-4\right)=0\)
=> \(\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
Vậy f (x) có 2 nghiệm: x1 = 1; x2 = 4.
b/ Khi f (x) = 0
=> \(2x^2+3x+1=0\)
=> \(2x^2+2x+x+1=0\)
=> \(\left(2x^2+2x\right)+\left(x+1\right)=0\)
=> \(2x\left(x+1\right)+\left(x+1\right)=0\)
=> \(\left(x+1\right)\left(2x+1\right)=0\)
=> \(\orbr{\begin{cases}x+1=0\\2x+1=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-1\\x=\frac{-1}{2}\end{cases}}\)
Vậy f (x) có 2 nghiệm: x1 = -1; x2 = \(\frac{-1}{2}\)
a) Cho F(x) =0
=> x^2 -5x +4 =0
x^2 -x - 4x +4 =0
x.( x-1) - 4.( x-1) =0
( x-1).( x-4) =0
=> x-1= 0 => x-4=0
x=1 x=4
KL: x=1;x=4 là nghiệm của đa thức F(x)
b) Cho F(x) =0
=> 2x^2 +3x +1 =0
2x^2 + 2x +( x+1) =0
2x.( x+1) +( x+1) =0
(x+1) .( 2x+1) =0
=> x+1 =0 => 2x+1 =0
x= -1 2x =-1
x = -1/2
KL: x= -1; x= -1/2 là nghiệm của đa thức F(x)
Chúc bn học tốt !!!!!!
1. x = 1
2. a) ko có nghiệm vì x2 lớn hơn 0
=> x2 - 5x + 4 lớn hơn hoặc bằng 4 > 0
b) cx ko có nghiệm (giải thích như câu a)
a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12
= (5x4 + x4) + (- 5 - 12) + 6x3 - 5x
= 6x4 - 17 + 6x3 - 5x
= 6x4 + 6x3 - 5x - 17
B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2
= (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2
= 4x4 + 6x3 - 5x - 15 - 2x2
= 4x4 + 6x3 - 2x2 - 5x - 15
b) C(x) = A(x) - B(x)
= 6x4 + 6x3 - 5x - 17 - (4x4 + 6x3 - 2x2 - 5x - 15)
= 6x4 + 6x3 - 5x - 17 - 4x4 - 6x3 + 2x2 + 5x + 15
= ( 6x4 - 4x4) + ( 6x3 - 6x3) + (- 5x + 5x) + (-17 + 15) + 2x2
= 2x4 - 2 + 2x2
= 2x4 + 2x2 - 2
a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12(cái phần A(x) sửa lại đii )
=> A(x) = (5x4 + x4) + (-5 - 12) + 6x3 - 5x
=> A(x) = 6x4 - 17 + 6x3 - 5x
Sắp xếp : A(x) = 6x4 + 6x3 - 5x - 17
B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2
=> B(x) = (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2
=> B(x) = 6x4 + 6x3 - 5x - 15 - 2x2
Sắp xếp : B(x) = 6x4 + 6x3 - 2x2 - 5x - 15
b) * Tính A(x) + B(x)
A(x) = 6x4 + 6x3 - 5x - 17
B(x) = 6x4 + 6x3 - 2x2 - 5x - 15
A(x) + B(x) = 12x4 + 12x3 - 2x2 - 10x - 32
Đến đây bạn tìm nghiệm thử coi :v
a.
\(P-\left(5x^4-xyz\right)=xy+2x^4-6xyz+654\)
\(\Rightarrow P=5x^4-xyz+xy+2x^4-6xyz+654\)
\(\Rightarrow P=7x^4-7xyz+xy+654\)
b.
\(x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)