B1 : tính
A= 1 + 2 +3 +4+5+...+99+100
B =\(\frac{1}{2}\)+ \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9900}\)
B2 : Tính
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
B3 :So sánh
\(M=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)với 1
B4: Tính
\(B=\frac{1+2+2^2+2^3+...+2^{2015}}{1-2^{2016}}\)
Mấy bạn làm được bài nào thì chỉ cho mình zới
Mk giải ko chép lại đề nhá!
Bài 3:
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}\)\(-\frac{1}{50}\)
\(=\frac{1}{1}-\frac{1}{50}\)
\(=\frac{50}{50}-\frac{1}{50}\)
\(=\frac{49}{50}\)
Vậy: M < 1
Bài 2:
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(=\frac{1}{1}-\frac{1}{2015}\)
\(=\frac{2015}{2015}-\frac{1}{2015}\)
\(=\frac{2014}{2015}\)