Cho tam giác nhọn ABC có góc A bằng 60 độ, các đường cao BD và CE. Chứng minh rằng: SADE=1/4SABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
\(\widehat{BAD}\) chung
Do đó:ΔABD\(\sim\)ΔACE
Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AD\cdot AC\)
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
\(\widehat{DAE}\) chung
Do đó:ΔADE\(\sim\)ΔABC
Suy ra: \(\widehat{ADE}=\widehat{ABC}\)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
góc A chung
=>ΔADB đồng dạng với ΔAEC
=>AD/AE=AB/AC
=>AD*AC=AB*AE;AD/AB=AE/AC
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc DAE chung
=>ΔADE đồng dạng với ΔABC
=>góc ADE=góc ABC
d: ΔADE đồng dạngvới ΔABC
=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\dfrac{1}{4}\)
=>\(S_{ADE}=30\left(cm^2\right)\)
Xét tứ giác BEDC có
góc BEC=góc BDC=90 độ
=>BEDC là tứ giác nội tiếp
=>góc AED=góc ACB
Xét ΔAED và ΔACB có
góc AED=góc ACB
góc A chung
=>ΔAED đồng dạng với ΔACB
=>S AED/S ACB=(AE/AC)^2=(cos60)^2=1/4
=>S AED=1/4*S ACB
Tam giác ABD vuông tại D có \(\cos\widehat{A}=\cos60^0=\dfrac{AD}{AB}=\dfrac{1}{2}\)
Tam giác AEC vuông tại E có \(\cos\widehat{A}=\cos60^0=\dfrac{AE}{AC}=\dfrac{1}{2}\)
Ta có \(\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(=\dfrac{1}{2}\right)\\\widehat{A}.chung\end{matrix}\right.\Rightarrow\Delta ADE\sim\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\dfrac{DE}{BC}=\dfrac{AD}{AB}=\dfrac{1}{2}\\ \Rightarrow2DE=BC\)
Bạn tự vẽ hình
Đặt \(AB=x\)
Xét \(\Delta DAB\) vuông tại D, ta có:
\(\cos A=\dfrac{AD}{AB}\) (tỉ số lượng giác)
\(\Rightarrow AD=AB.\cos A=x.\cos60^o=0,5x\)
Xét \(\Delta ADB\) và \(\Delta AEC\), ta có:
\(\left\{{}\begin{matrix}\widehat{A}chung\\\widehat{ABD}=\widehat{ACE\left(2gocphunhau\right)}\end{matrix}\right.\)
\(\Rightarrow\Delta ADB\sim\Delta AEC\left(g.g\right)\)
Xét \(\Delta ABC\) và \(\Delta ADE\), ta có:
\(\left\{{}\begin{matrix}\widehat{A}chung\\\dfrac{AB}{AC}=\dfrac{AD}{AE}\left(\Delta ABD\sim\Delta ADE\right)\end{matrix}\right.\)
\(\Rightarrow\Delta ABC\sim\Delta ADE\left(c.g.c\right)\\ \Rightarrow\dfrac{AB}{AD}=\dfrac{BC}{DE}\\ \Rightarrow\dfrac{x}{0,5x}=\dfrac{BC}{DE}\\ \Rightarrow BC=\dfrac{DE.x}{0,5x}=2DE\)
Ta có: ∆ABD ~ ∆ACE( g.g) => A D A B = A E A C
=> S A D E S A B C = A E A C 2
Mà trong ∆ACE có cosA = A E A C
=> S A D E S A B C = cos A 2
=> S A D E = S A B C . cos 2 A
A B C D E
\(\Delta ACE\)vuông tại A có \(\widehat{A}=60^o\)nên \(\widehat{ACE}=30^o\)
\(\Rightarrow\frac{AE}{AC}=\frac{1}{2}\)
Tương tự : \(\frac{AD}{AB}=\frac{1}{2}\)
\(\Rightarrow\frac{AE}{AC}=\frac{AD}{AB}\Rightarrow\frac{AE}{AD}=\frac{AC}{AB}\)
chứng minh : \(\Delta ADE\approx\Delta ABC\)( c.g.c )
\(\Rightarrow\frac{S_{ADE}}{S_{ABC}}=\left(\frac{AD}{AB}\right)^2=\frac{1}{4}\)
\(\Rightarrow S_{ADE}=\frac{1}{4}S_{ABC}\)