K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2019

Ta có : \(x^2-6x=0\) 

\(\Leftrightarrow x\left(x-6\right)=0\) 

\(\Leftrightarrow x=0\) hoặc \(x-6=0\) 

+, \(x=0\) 

+, \(x-6=0\) 

\(\Leftrightarrow x=6\) 

Vậy \(S=\left\{0;6\right\}\)

cho x^2-6x=0

x^2-6=0

x(x-6)=0

suy ra x=0 hoặc x=6

20 tháng 5 2021

\(2x^2+2x+1=0\)

\(< =>4x^2+4x+2=0\)

\(< =>\left(2x\right)^2+2.2x.1+1^2+1=0\)

\(< =>\left(2x+1\right)^2+1=0\)

Do \(\left(2x+1\right)^2\ge0=>\left(2x+1\right)^2+1>0\)

=> pt voo nghieemj

20 tháng 5 2021

\(x^2-6x+15=0\)

\(< =>x^2-2.x.3+9+6=0\)

\(< =>\left(x-3\right)^2+6=0\)

Do \(\left(x-3\right)^2\ge0=>\left(x-3\right)^2+6>0\)

=> da thuc vo nghiem

NV
15 tháng 1 2024

\(\Leftrightarrow x^6-2\left(x^3+3x^2+3x+1\right)-15< 0\)

\(\Leftrightarrow x^6-2\left(x+1\right)^3-15< 0\)

\(\Leftrightarrow x^6< 2\left(x+1\right)^3+15\) (1)

- Với \(x\le-2\Rightarrow x+1\le-1\Rightarrow2\left(x+1\right)^3+15\le13\)

Trong khi đó \(x^6\ge2^6=32>13\) (ktm(1))

\(\Rightarrow\) Không tồn tại \(x\le-2\) thỏa mãn BPT (2)

- Với \(x\ge3\Rightarrow x^2\ge3x=2x+x\ge2x+3>2x+2\)

\(\Rightarrow x^2>2\left(x+1\right)\Rightarrow x^6>2^3.\left(x+1\right)^3=8\left(x+1\right)^3\) (3)

(1);(3) \(\Rightarrow2\left(x+1\right)^3+15>8\left(x+1\right)^3\)

\(\Rightarrow6\left(x+1\right)^3< 15\Rightarrow\left(x+1\right)^3< \dfrac{5}{2}< 8\)

\(\Rightarrow x+1< 2\Rightarrow x< 1\) (mâu thuẫn giả thiết \(x\ge3\))

\(\Rightarrow\) Không tồn tại \(x\ge3\) thỏa mãn BPT (4)

Từ (2);(4) \(\Rightarrow\) các giá trị nguyên của x nếu có thỏa mãn BPT chúng sẽ thuộc \(-2< x< 3\)

\(\Rightarrow x=\left\{-1;0;1;2\right\}\)

Thay vào BPT ban đầu thử thấy đều thỏa mãn

Vậy \(x=\left\{-1;0;1;2\right\}\)

14 tháng 5 2022

Đặt x2 + 6x - 7 = 0

=> x2 - x + 7x - 7 = 0

=> x(x - 1 ) + 7 ( x-1) = 0

=> (x-1) . ( x+7) = 0

=> \(\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.=>\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)

Vậy nghiệm của đa thức trên là 1 hoặc -7

Tìm nghiệm của : x^2+6x-7

Nghiệm là x = 1; -7

11 tháng 10 2023

a) \(6x^2-2x=2x\left(3x-1\right)\)

\(2x\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}2x=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(S=\left\{0;\dfrac{1}{3}\right\}\)

b) \(x^2+5x+6=x^2+2x+3x+6=x\left(x+2\right)+3\left(x+2\right)=\left(x+3\right)\left(x+2\right)\)

\(\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)

Vậy \(S=\left\{-3;-2\right\}\)

NV
8 tháng 3 2021

\(6x^2+\left(2y-1\right)x+10y^2-28y+18=0\)

\(\Delta=\left(2y-1\right)^2-24\left(10y^2-28y+18\right)\ge0\)

\(\Leftrightarrow-236y^2+668y-431\ge0\)

\(\Rightarrow\dfrac{167-2\sqrt{615}}{118}\le y\le\dfrac{167+2\sqrt{615}}{118}\)

\(\Rightarrow y=1\)

Thế vào pt đầu ...

9 tháng 4 2017

ta có: f(x)-g(x)=-9x2+6x=0 => x(-9x+6)=0 => x=0 hoặc -9x+6=0 => x=0 hoặc x=2/3

Vậy nghiệm của đa thức f(x)-g(x)=-9x2+6x là 0 hoặc 2/3

14 tháng 4 2019

R= x^2+x+8x+8=(x+8)(x+1)=0

x+8=0 hoặc x+1=0

x=-8 hoặc x=-1

Vậy......

hok tốt