Tính
\(\frac{18.275+3.666+}{1+4+7+...+58+61+62.3+62.4-271}\) \(\frac{9.614,2}{71}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}1,2.\frac{{15}}{4} + \frac{{16}}{7}.\frac{{ - 85}}{8} - 1,2.5\frac{3}{4} - \frac{{16}}{7}.\frac{{ - 71}}{8}\\ =(1,2.\frac{{15}}{4} - 1,2.5\frac{3}{4}) +( \frac{{16}}{7}.\frac{{ - 85}}{8}- \frac{{16}}{7}.\frac{{ - 71}}{8}) \\= \frac{{12}}{{10}}.\frac{{15}}{4} - \frac{{12}}{{10}}.\frac{{23}}{4} + \frac{{16}}{7}.\frac{{ - 85}}{8} - \frac{{16}}{7}.\frac{{ - 71}}{8}\\ = \frac{6}{5}.\frac{{15}}{4} - \frac{6}{5}.\frac{{23}}{4} + \frac{{16}}{7}.\frac{{ - 85}}{8} + \frac{{16}}{7}.\frac{{71}}{8}\\ = \frac{6}{5}.(\frac{{15}}{4} - \frac{{23}}{4}) + \frac{{16}}{7}.(\frac{{ - 85}}{8} + \frac{{71}}{8})\\ = \frac{6}{5}.\frac{{ - 8}}{4} + \frac{{16}}{7}.\frac{{ - 14}}{8}\\ = \frac{6}{5}.( - 2) + ( - 4)\\ = \frac{{ - 12}}{5} + \frac{{ - 20}}{5}\\ = \frac{{ - 32}}{5}\end{array}\)
Chú ý: Nếu phân số chưa tối giản, ta nên tối giản phân số trước để việc tính toán được thuận tiện hơn.
\(\frac{1}{2^3}\)D= \(\frac{1}{2^4}-\frac{1}{2^7}+\frac{1}{2^{10}}-\frac{1}{2^{13}}+...+\frac{1}{2^{58}}-\frac{1}{2^{61}}\)
D+ \(\frac{1}{2^3}\)D=\(\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^4}+\frac{1}{2^7}-\frac{1}{2^7}-\frac{1}{2^{10}}+\frac{1}{2^{10}}+...-\frac{1}{2^{58}}+\frac{1}{2^{58}}-\frac{1}{2^{61}}\)
\(\frac{9}{8}\)D= \(\frac{1}{2}-\frac{1}{2^{61}}\)=> D= \(\frac{\frac{1}{2}-\frac{1}{2^{61}}}{\frac{9}{8}}\)
Tính D, biết
D=\(\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^7}-\frac{1}{2^{10}}+........-\frac{1}{2^{58}}\)
\(D=\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^7}-\frac{1}{2^{10}}+...+\frac{1}{2^{55}}-\frac{1}{2^{58}}\)
\(\Rightarrow2^3D=2^2-\frac{1}{2}+\frac{1}{2^4}-\frac{1}{2^7}+....+\frac{1}{2^{52}}-\frac{1}{2^{55}}\)
\(\Rightarrow8D+D=2^2-\frac{1}{2^{58}}\)
\(\Rightarrow D=\frac{2^2-\frac{1}{2^{58}}}{9}\)