Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{2^3}\)D= \(\frac{1}{2^4}-\frac{1}{2^7}+\frac{1}{2^{10}}-\frac{1}{2^{13}}+...+\frac{1}{2^{58}}-\frac{1}{2^{61}}\)
D+ \(\frac{1}{2^3}\)D=\(\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^4}+\frac{1}{2^7}-\frac{1}{2^7}-\frac{1}{2^{10}}+\frac{1}{2^{10}}+...-\frac{1}{2^{58}}+\frac{1}{2^{58}}-\frac{1}{2^{61}}\)
\(\frac{9}{8}\)D= \(\frac{1}{2}-\frac{1}{2^{61}}\)=> D= \(\frac{\frac{1}{2}-\frac{1}{2^{61}}}{\frac{9}{8}}\)
D=1/2-1/24 +1/27-1/210 +.......+1/258
2D =1 - 1/2-1/24 +1/27-1/210 +.......+1/257
2D -D =(1 - 1/2-1/24 +1/27-1/210 +.......+1/257)-(1/2-1/24 +1/27-1/210 +.......+1/258)
D=1-1/258
a) 20,7 + 1,47 : 7 - 0,23 . 5
= 20,7 + 0,21 – 1,15
= 20,91 – 1,15
= 19,76
Ở trên vietjack có đó bn =)
a, 20,7 + 1,47 : 7 - 0,23 . 5
=\(\frac{207}{10}+\frac{147}{100}:7-\frac{23}{100}.5\)
= \(\frac{207}{10}+\frac{21}{100}-\frac{23}{20}\)
= \(\frac{2091}{100}+\frac{-23}{20}\)
= \(\frac{494}{25}\)
a, \(A=\frac{2}{5}+\frac{-1}{6}-\frac{3}{4}-\frac{-2}{3}\)
\(A=\left(\frac{2}{5}-\frac{3}{4}\right)+\left(\frac{-1}{6}-\frac{-2}{3}\right)\)
\(A=\left(\frac{8}{20}-\frac{15}{20}\right)+\left(\frac{-3}{18}-\frac{-12}{18}\right)\)
\(A=\frac{-7}{20}+\frac{1}{2}\)
\(\Rightarrow A=\frac{-7}{20}+\frac{10}{20}=\frac{3}{20}\)
b, \(B=\frac{7}{10}-\frac{-3}{4}+\frac{-5}{6}-\frac{1}{5}+\frac{-2}{3}\)
\(B=\left(\frac{7}{10}-\frac{1}{5}\right)+\left(\frac{-5}{6}+\frac{-2}{3}\right)-\frac{-3}{4}\)
\(B=\left(\frac{7}{10}-\frac{2}{10}\right)+\left(\frac{-5}{6}+\frac{-4}{6}\right)-\frac{-3}{4}\)
\(B=\frac{1}{2}+\frac{-3}{2}-\frac{-3}{4}\)
\(B=\frac{2}{4}+\frac{-6}{4}-\frac{-3}{4}\)
\(\Rightarrow B=\frac{2+-6+3}{4}=\frac{-1}{4}\)
c, \(C=\frac{\left(\frac{1}{2}-0,75\right)\times\left(0,2-\frac{2}{5}\right)}{\frac{5}{9}-1\frac{1}{12}}\)
\(C=\frac{\left(\frac{1}{2}-\frac{3}{4}\right)\times\left(\frac{1}{5}-\frac{2}{5}\right)}{\frac{5}{9}-\frac{1\times12+1}{12}}\)
\(C=\frac{\left(\frac{2}{4}-\frac{3}{4}\right)\times\left(\frac{-1}{5}\right)}{\frac{5}{9}-\frac{13}{12}}\)
\(C=\frac{\left(\frac{-1}{4}\right)\times\left(\frac{-1}{5}\right)}{\frac{60}{108}-\frac{117}{108}}\)
\(C=\frac{\frac{1}{20}}{\frac{-19}{36}}=\frac{1}{20}\div\frac{-19}{36}=\frac{1}{20}\times\frac{36}{-19}\)
\(\Rightarrow C=\frac{36}{-380}=\frac{-9}{95}\)
d, \(D=\frac{\frac{2}{3}+\frac{2}{7}-\frac{1}{4}}{-1-\frac{3}{7}+\frac{3}{28}}\)
\(D=\frac{\frac{56}{84}+\frac{24}{84}-\frac{21}{84}}{\frac{-10}{7}+\frac{3}{28}}\)
\(D=\frac{\frac{59}{84}}{\frac{-40}{28}+\frac{2}{28}}=\frac{59}{84}\div\frac{-37}{28}=\frac{59}{84}\times\frac{28}{-37}\)
\(\Rightarrow D=\frac{1652}{-3108}=\frac{-59}{111}\)
\(D=\frac{1}{2}-\frac{1}{2^4}+\frac{1}{2^7}-\frac{1}{2^{10}}+...+\frac{1}{2^{55}}-\frac{1}{2^{58}}\)
\(\Rightarrow2^3D=2^2-\frac{1}{2}+\frac{1}{2^4}-\frac{1}{2^7}+....+\frac{1}{2^{52}}-\frac{1}{2^{55}}\)
\(\Rightarrow8D+D=2^2-\frac{1}{2^{58}}\)
\(\Rightarrow D=\frac{2^2-\frac{1}{2^{58}}}{9}\)