K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2023

a: \(x\left(1-2x\right)+2x^2=14\)

=>\(x-2x^2+2x^2=14\)

=>x=14

b: \(x\left(x-5\right)+3x-15=0\)

=>\(\left(x-5\right)\left(x+3\right)=0\)

=>\(\left[{}\begin{matrix}x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-3\end{matrix}\right.\)

7 tháng 6 2021

`a)16x^2-24x+9=25`

`<=>(4x-3)^2=25`

`+)4x-3=5`

`<=>4x=8<=>x=2`

`+)4x-3=-5`

`<=>4x=-2`

`<=>x=-1/2`

`b)x^2+10x+9=0`

`<=>x^2+x+9x+9=0`

`<=>x(x+1)+9(x+1)=0`

`<=>(x+1)(x+9)=0`

`<=>` \(\left[ \begin{array}{l}x=-9\\x=-1\end{array} \right.\) 

`c)x^2-4x-12=0`

`<=>x^2+2x-6x-12=0`

`<=>x(x+2)-6(x+2)=0`

`<=>(x+2)(x-6)=0`

`<=>` \(\left[ \begin{array}{l}x=-2\\x=6\end{array} \right.\) 

7 tháng 6 2021

`d)x^2-5x-6=0`

`<=>x^2+x-6x-6=0`

`<=>x(x+1)-6(x+1)=0`

`<=>(x+1)(x-6)=0`

`<=>` \(\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.\) 

`e)4x^2-3x-1=0`

`<=>4x^2-4x+x-1=0`

`<=>4x(x-1)+(x-1)=0`

`<=>` \(\left[ \begin{array}{l}x=1\\x=-\dfrac14\end{array} \right.\) 

`f)x^4+4x^2-5=0`

`<=>x^4-x^2+5x^2-5=0`

`<=>x^2(x^2-1)+5(x^2-1)=0`

`<=>(x^2-1)(x^2+5)=0`

Vì `x^2+5>=5>0`

`=>x^2-1=0<=>x^2=1`

`<=>` \(\left[ \begin{array}{l}x=1\\x=-1\end{array} \right.\) 

23 tháng 10 2021

\(a,\Leftrightarrow\left(2x-3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow x^3-27-x^3+4x=1\\ \Leftrightarrow4x=28\Leftrightarrow x=7\\ c,\Leftrightarrow4x^2-4x-8=0\\ \Leftrightarrow x^2-x-2=0\\ \Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\\ d,\Leftrightarrow2x^2+6x+x+3=0\\ \Leftrightarrow\left(x+3\right)\left(2x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

15 tháng 9 2021

a. (2x + 1)2 - 4x2 + 2x2 - 2 = 0

<=> (2x + 1 - 2x)(2x + 1 + 2x) + 2(x2 - 1) = 0

<=> (4x + 1) + 2x2 - 2 = 0

<=> 4x + 1 + 2x2 - 2 = 0

<=> 2x2 + 4x - 2 + 1 = 0

<=> 2x2 + 4x - 1 = 0

<=> 2x2 + 4x = 1

<=> 2x(x + 2) = 1

Vì 1 chỉ có tích là 1 . 1 nên:

<=> \(\left[{}\begin{matrix}2x=1\\x+2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-1\end{matrix}\right.\)

15 tháng 9 2021

\(a,\Leftrightarrow4x^2+4x+1-4x^2+2x^2-2=0\\ \Leftrightarrow2x^2+4x-1=0\\ \Leftrightarrow2\left(x^2+2x+1\right)-3=0\\ \Leftrightarrow2\left(x+1\right)^2-3=0\\ \Leftrightarrow\left(x+1\right)^2=\dfrac{3}{2}\\ \Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{\dfrac{3}{2}}\\x+1=-\sqrt{\dfrac{3}{2}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{6}}{2}\\x=\dfrac{-2+\sqrt{6}}{2}\end{matrix}\right.\)

\(b,\left(x-2\right)\left(x+2\right)-\left(x+3\right)^2-2x-5=0\\ \Leftrightarrow x^2-4-x^2-6x-9-2x-5=0\\ \Leftrightarrow-8x=18\\ \Leftrightarrow x=-\dfrac{9}{4}\)

a: Ta có: \(\left(x-5\right)\left(x+3\right)=x\left(x-3\right)\)

\(\Leftrightarrow x^2-2x-15-x^2+3x=0\)

\(\Leftrightarrow x=15\)

b: Ta có: \(\left(x+2\right)^2=\left(x-1\right)\left(x+2\right)\)

\(\Leftrightarrow x+2=0\)

hay x=-2

c: Ta có: \(\left(x-6\right)\left(x+6\right)=x^2\)

\(\Leftrightarrow x^2-36=x^2\)(vô lý)

3 tháng 10 2021

a. (x - 5)(x + 3) = x(x - 3)

<=> x2 + 3x - 5x - 15 = x2 - 3x

<=> x2 - x2 + 3x - 5x + 3x - 15 = 0

<=> x = 15

b. (x + 2)2 = (x - 1)(x + 2)

<=> x2 + 4x + 4 = x2 + 2x - x - 2

<=> x2 - x2 + 4x - 2x + x = -2 - 4

<=> 3x = -5

<=> \(x=\dfrac{-5}{3}\)

c. (x - 6)(x + 6) = x2

<=> x2 - 36 - x2 = 0

<=> x2 - x2 = 36

<=> 0 = 36 (vô lí)

Vậy nghiệm của PT là \(S=\varnothing\)

d. (2x - 3)2 = 4x2 - 8 

<=> 4x2 - 12x + 9 - 4x2 + 8 = 0

<=> 4x2 - 4x2 - 12x = -8 - 9

<=> -12x = -17

<=> \(x=\dfrac{17}{12}\)

20 tháng 7 2021

a. `4x^2-20x+25=0`

`<=>(2x)^2-2.2x.5 +5^2=0`

`<=>(2x-5)^2=0`

`<=>2x-5=0`

`<=>x=5/2`

b. `(x-5)(x+5)-(x-3)^2=2(x-7)`

`<=>x^2-25-x^2+6x-9=2x-14`

`<=>6x-34=2x-14`

`<=>4x=20`

`<=>x=5`

20 tháng 7 2021

\(a,4x^2-20x+25=0\Leftrightarrow\left(2x\right)^2-2.2x.5+5^2=0\)

\(\Leftrightarrow\left(2x-5\right)^2=0\Leftrightarrow x=\dfrac{5}{2}\)

b, \(\left(x-5\right)\left(x+5\right)-\left(x-3\right)^2=2\left(x-7\right)\)

\(\Leftrightarrow x^2-25-x^2+6x-9=2x-14\Leftrightarrow4x=20\Leftrightarrow x=5\)

7 tháng 7 2021

\(a,\left(3x-7\right)^2=\left(2-2x\right)^2\)

a,\(=>\left(3x-7\right)^2-\left(2-2x\right)^2=0\)

\(< =>\left(3x-7+2-2x\right)\left(3x-7-2+2x\right)=0\)

\(< =>\left(x-5\right)\left(5x-9\right)=0=>\left[{}\begin{matrix}x=5\\x=1,8\end{matrix}\right.\)

b, \(x^2-8x+6=0< =>x^2-2.4x+16-10=0\)

\(< =>\left(x-4\right)^2-\sqrt{10}^2=0\)

\(=>\left(x-4+\sqrt{10}\right)\left(x-4-\sqrt{10}\right)=0\)

\(=>\left[{}\begin{matrix}x=4-\sqrt{10}\\x=4+\sqrt{10}\end{matrix}\right.\)

c, \(4x^2-2x-1=0\)

\(< =>\left(2x\right)^2-2.2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{5}{4}=0\)

\(=>\left(2x-\dfrac{1}{2}\right)^2-\left(\dfrac{\sqrt{5}}{2}\right)^2=0\)

\(=>\left(2x+\dfrac{-1+\sqrt{5}}{2}\right)\left(2x-\dfrac{1+\sqrt{5}}{2}\right)=0\)

\(=>\left[{}\begin{matrix}x=\dfrac{1-\sqrt{5}}{4}\\x=\dfrac{1+\sqrt{5}}{4}\end{matrix}\right.\)

d,\(x^4-4x^2-32=0\)

đặt \(t=x^2\left(t\ge0\right)=>t^2-4t-32=0\)

\(< =>t^2-2.2t+4-6^2=0\)

\(=>\left(t-2\right)^2-6^2=0=>\left(t-8\right)\left(t+4\right)=0\)

\(=>\left[{}\begin{matrix}t=8\left(tm\right)\\t=-4\left(loai\right)\end{matrix}\right.\)\(=>x=\pm\sqrt{8}\)

 

a: Ta có: \(2x^3-18x=0\)

\(\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

b: Ta có: \(\left(3x-2\right)\left(2x+1\right)-6x\left(x+2\right)=11\)

\(\Leftrightarrow6x^2+3x-4x-2-6x^2-12x=11\)

\(\Leftrightarrow-13x=13\)

hay x=-1

c: Ta có: \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)=3\left(1-x^2\right)\)

\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8=3-3x^2\)

\(\Leftrightarrow3x=12\)

hay x=4

4 tháng 9 2021

a) 2x3-18x=0

⇔ 2x(x2-9)=0

⇔ 2x(x-3)(x+3)=0

⇔ \(\left\{{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)

b)(3x-1)(2x+1)-6x(x+2)=11

 

⇔ 6x2+x-1-6x2-12x=11

⇔ -11x=12

\(\Leftrightarrow x=-\dfrac{12}{11}\)

c) (x-1)3-(x+2).(x2-2x+4)=3.(1-x2)

⇔ x3-3x2+3x-1-x3-8-3+3x2=0

⇔ 3x=12

⇔   x=4

a: =>2^x*4-2^x*3=32

=>2^x=32

=>x=5

b: =>(4x-3)^2-(4x-3)=0

=>(4x-3)(4x-3-1)=0

=>(4x-3)(4x-4)=0

=>x=3/4 hoặc x=1

c: =>7^2x+7^2x*7^3=344

=>7^2x=1

=>2x=0

=>x=0

d: =>(7x-3)^2012-(7x-3)^2010=0

=>(7x-3)^2010*[(7x-3)^2-1]=0

=>(7x-3)^2010*(7x-4)(7x-2)=0

=>x=2/7; x=4/7; x=3/7

e: =>(4x^2-3)^3=-8

=>4x^2-3=-2

=>4x^2=1

=>x^2=1/4

=>x=1/2 hoặc x=-1/2

8 tháng 8 2023

a) 2x(22 - 3) = 32

2x.1=25

=> x = 5

b) (4x - 3)2 = 4x -3

=> (4x - 3)2 - (4x - 3) = 0

(4x-3)[(4x - 3) - 1] = 0

(4x-3)(4x - 4)=0

\(\Rightarrow\left[{}\begin{matrix}4x-3=0\\4x-4=0\end{matrix}\right.\)         \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=1\end{matrix}\right.\)

c) 72x + 72x+3 = 344

=> 72x(1 + 73) =344

72x . 344 = 344

=> 2x = 0  => x = 0

d) (7x - 3)2012 = (3 - 7x)2010

=> (7x - 3)2012 - (7x - 3)2010 = 0

(7x - 3)2010 [(7x - 3)2 - 1] = 0

\(\Rightarrow\left[{}\begin{matrix}7x-3=0\\\left(7x-3\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{7}\\7x=4\\7x=2\end{matrix}\right.\)                 \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{7}\\x=\dfrac{4}{7}\\x=\dfrac{2}{7}\end{matrix}\right.\)

e) (4x2 - 3)3 + 8 = 0

(4x2 - 3)3 = (-2)3

=> 4x2 - 3 = -2

4x2 = 1

x2 = 1/4

=> \(x=\pm\dfrac{1}{2}\)

12 tháng 3 2023

a) 4 x 5 - 4 x 2 + 4

= 4 x 5 - 4 x 2 + 4 x 1

= 4 x ( 5 - 2 + 1 )

= 4 x 4

= 16

b) 2 x 3 + 9 + 3 x 3

= 2 x 3 + 3 x 3 + 3 x 3

= 3 x ( 2 + 3 + 3 )

= 3 x 8

= 24

c) 2 + 2 x 9

= 2 x 1 + 2 x 9

= 2 x ( 1 + 9 )

= 2 x 10

= 20

16 tháng 3 2023

a) 4 x 5 - 4 x 2 + 4

= 4 x 5 - 4 x 2 + 4 x 1

= 4 x ( 5 - 2 + 1 )

= 4 x 4

= 16

b) 2 x 3 + 9 + 3 x 3

= 2 x 3 + 3 x 3 + 3 x 3

= 3 x ( 2 + 3 + 3 )

= 3 x 8

= 24

c) 2 + 2 x 9

= 2 x 1 + 2 x 9

= 2 x ( 1 + 9 )

= 2 x 10

= 20

Đáp án đây nhé