K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2019

Đề sai.Cho x = 1 thì A = 12 - 2 . 1 + 7 = (-1) + 7 = 6 < 7 (trái với đề bài) -_-" đăng vậy mà chứng minh cái nỗi gì..

Đề sai nhé

\(A=x^2-2x+9\)(thì đc)

\(A=\left(x-1\right)^2+9-1=\left(x-1\right)^2+8>7\left(dpcm\right)\)

14 tháng 9 2018

\(A=x^2-6x+15\)

\(A=x^2-2\cdot x\cdot3+3^2+6\)( biến đổi về dạng HĐT )

\(A=\left(x-3\right)^2+6\)

vì ( x - 3 )2 luôn >= 0 với mọi x

\(\Rightarrow A\ge6\)với mọi x

Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy Amin = 6 <=> x = 3

14 tháng 9 2018

\(B=2x^2-10x+8\)

\(B=2\left(x^2-5x+4\right)\)

\(B=2\left(x^2-2\cdot x\cdot\frac{5}{2}+\left(\frac{5}{2}\right)^2-\frac{9}{4}\right)\)

\(B=2\left[\left(x-\frac{5}{2}\right)^2-\frac{9}{4}\right]\)

\(B=2\left(x-\frac{5}{2}\right)^2-\frac{9}{2}\)

Vì 2( x - 5/2 )2 luôn >= 0 với mọi x

\(\Rightarrow B\ge\frac{-9}{2}\)với mọi x

Dấu "=" xảy ra \(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)

Vậy Bmin = -9/2 <=> x = 5/2

22 tháng 10 2023

Giúp mik dới ạ, mik đg cần gấp!

19 tháng 5 2017

Câu a.

Ta luôn có 

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)  (do a+b < a+b+c)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng theo từng vế rồi rút gọn ta đươc đpcm

19 tháng 5 2017

Cảm ơn b nhé. B biết làm.câu b c d không giúp m với

12 tháng 6 2015

1 ) Do /x - 1/ >= 0

 nên /x - 1/ > 1/2

<=> x > 3/2

2 ) Do /x + 2/ >= 0

nên /x + 2/ >= 7

<=> x >= 5

3 ) Do /2x + 3/> = 0

nên /2x + 3/>=1/2

<=> 2x >= -5/2

<=>x=-5/4

30 tháng 4 2017

a)(2x2-x-3)2-7(2x2-x-3)+42=0

Đặt 2x2-x-3=t ta được:

t2-7t+42=0

<=>t2-7t+12,25+29,75=0

<=>(t-3,5)2+29,75=0(vô lí)

b)Ta có:(a-b)2\(\ge\)0

<=>a2-2ab+b2\(\ge\)0

<=>a2+b2\(\ge\)2ab(1)

Dấu "=" xảy ra khi và chỉ khi a-b=0<=>a=b

Tương tự ta có:

b2+c2\(\ge\)2bc(2)

c2+a2\(\ge\)2ca(3)

cộng vế với vế 1 , 2 và 3 ta có:

2(a2+b2+c2)\(\ge\)2(ab+bc+ca)(*)

<=>a2+b2+c2\(\ge\)ab+bc+ca

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)<=>a=b=c

Từ (*) =>3(a2+b2+c2)\(\ge\)2(ab+bc+ca)+a2+b2+c2=(a+b+c)2

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)<=>a=b=c

29 tháng 6 2015

1) \(x^3-x^2+2x=x\left(x^2-x+2\right)\)bạn xem lại đề xem có sai không nha. chỗ này sau khi thu gọn và cho x ra ngoài thì phải có dạng: \(x\left(x^2-3x+2\right)=x\left(x^2-2x-x+2\right)=x\left(x-1\right)\left(x-2\right)\)hoặc \(x\left(x^2+3x+2\right)=x\left(x^2+2x+x+2\right)=x\left(x+1\right)\left(x+2\right)\)

nó là tích của 3 số tự nhiên liên tiếp => trong đó phỉa có 1 số chia hết cho 2, có một số chia hết cho 3. vì 3,2 ngtố cùng nhau =>tích của 3 số ltiếp sẽ chia hết cho 3.2=6 => chia hết cho 6 với mọi x

2) \(a^2-\left(b^2-2bc+c^2\right)=a^2-\left(b-c\right)^2=\left(a+b-c\right)\left(a-b+c\right)\)

mình làm đến đây thì k biết giải thích sao nữa :( thôi cứ tick đúng cho mình nha

29 tháng 6 2015

Câu 1 Sai đề. Chỉ cần thay x = 1,2,3 ta thấy ngay sai 

Câu 2 sai đề. chứng minh như sau;

Thay a,b,c là số dài 3 cạnh của 1 tam giác đều có cạnh 0,5 (nhỏ hơn 1 là đủ)

\(a^2-\left(b^2-2bc+c^2\right)>c\)\(\Leftrightarrow a^2-\left(b-c\right)^2>c\) 

Với a = b = c = 0,5 thì điều trên tương đương \(0,5^2-\left(0,5-0,5\right)^2>0,5\)

\(\Leftrightarrow0,25>0,5\) => vô lí

3 tháng 7 2017

Bài 2:

a) Áp dụng BĐT AM - GM ta có:

\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)

\(\ge\dfrac{1}{a+b}\) (Đpcm)

b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:

\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)

\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)

3 tháng 7 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)

Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)

\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)

\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng