K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2019

Với a;b;c không âm?

\(\left(a+b+c\right)^2=\left[a+\left(b+c\right)\right]^2\ge4a\left(b+c\right)\)

Ta sẽ cm \(4a\left(b+c\right)\ge4a\left(b-c\right)\Leftrightarrow4ac\ge-4ac\) (đúng với a;b;c không âm)

Dấu "=" xảy ra khi a;b không âm bất kì và c=0

15 tháng 5 2020

no biết

AH
Akai Haruma
Giáo viên
11 tháng 9 2017

Lời giải:

1)

Áp dụng BĐT AM-GM cho các số không âm ta có:

\(a^4+3=a^4+1+1+1\geq 4\sqrt[4]{a^4}\)

\(\Leftrightarrow a^4+3\geq 4|a|\geq 4a\)

Ta có đpcm. Dấu bằng xảy ra khi \(a=1\)

2)

Ghi đầy đủ đề:

\(a^2(1+b^2)+b^2(1+c^2)+c^2(1+a^2)\geq 6abc\)

Áp dụng BĐT AM-GM cho các số không âm:

\(\text{VT}=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\geq 6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}\)

\(\Leftrightarrow \text{VT}\geq 6\sqrt[6]{a^6b^6c^6}=6|abc|\geq 6abc\)

Ta có đpcm

Dấu bằng xảy ra khi \(a=b=c=1\)

11 tháng 9 2017

có cách nào k bn, hình như đề k cho k âm

26 tháng 3 2017

\(\left(a^2+b^2\right)\left(a^2+1\right)\ge4a^2b\)

\(\Leftrightarrow\left(a^2+b^2\right)\left(a^2+1\right)-4a^2b\ge0\)

\(\Leftrightarrow a^4+a^2+a^2b^2+b^2-4a^2b\ge0\)

\(\Leftrightarrow\left[\left(a^2\right)^2-2a^2b+b^2\right]+\left[a^2-2.a.ab+\left(ab\right)^2\right]\ge0\)

\(\Leftrightarrow\left(a^2-b\right)^2+\left(a^2-ab\right)^2\ge0\) là BĐT đúng

\(\Rightarrow\left(a^2+b^2\right)\left(a^2+1\right)\ge4a^2b\) đúng (ĐPCM)

7 tháng 9 2019

Từ giả thiết ta có: \(2=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\Rightarrow1\ge\frac{a+b}{2}\)

Do đó \(VT\ge\left(\frac{a^3}{b}+ba\right)\left(\frac{a}{b^2}+\frac{b}{a^2}\right).\frac{a+b}{2}\)

\(\ge2a^2.\frac{2}{\sqrt{ab}}.\sqrt{ab}=4a^2\left(qed\right)\) (cô si or AM-gM gì đó)

Đẳng thức xảy ra khi ...(chị tự giải rõ nhá)

7 tháng 9 2019

tth

5 tháng 2 2018

a) Áp dụng bất đẳng thức AM-GM : 

\(\left(a^2+b^2\right)\left(a^2+1\right)\ge2\sqrt{a^2b^2}.2\sqrt{a^2}\ge2ab.2a=4a^2b\)

b) Áp dụng bất đẳng thức :\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\forall x;y>0\)

 \(\frac{1}{a+3b}+\frac{1}{b+2c+a}\ge\frac{4}{a+3b+b+2c+a}=\frac{4}{2a+4b+2c}=\frac{2}{a+2b+c}\)

Tương tự \(\hept{\begin{cases}\frac{1}{b+3c}+\frac{1}{c+2a+b}\ge\frac{2}{b+2c+a}\\\frac{1}{c+3a}+\frac{1}{a+2b+c}\ge\frac{2}{b+2a+c}\end{cases}}\)

Cộng vế với vế ta được : \(VT+VP\ge2VP\Rightarrow VT\ge VP\)(đpcm)

31 tháng 1 2020

\(a,\) Ta có: \(S=\frac{ab\left(a-b\right)-bc\left(c-b\right)+ac\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Xét tử thức ta có: \(ab\left(a-b\right)-bc\left(c-b\right)+ac\left(c-a\right)\)

\(=ab\left(a-b\right)-bc\left[\left(c-a\right)+\left(a-b\right)\right]+ac\left(c-a\right)\)

\(=ab\left(a-b\right)-bc\left(c-a\right)-bc\left(a-b\right)+ac\left(c-a\right)\)

\(=-b\left(a-b\right)\left(c-a\right)+c\left(a-b\right)\left(c-a\right)\)

\(=\left(a-b\right)\left(c-b\right)\left(c-a\right)\)

\(=-\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Vậy \(S=\frac{-\left(a-b\right)\left(b-c\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=-1\)

Vậy .......

\(b,a^4+3\ge4a\)

\(\Leftrightarrow a^4-2a^2+1+2a^2-4a+2\ge0\)

\(\Leftrightarrow\left(a^2-1\right)^2+2\left(a-1\right)^2\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\left[\left(a+1\right)^2+2\right]\ge0\left(Luôn-đúng-\forall a\right)\)

Dấu " = " xảy ra \(\Leftrightarrow a=1\)

22 tháng 12 2017

\(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=\)\(b\left(a-c\right)\left(a+c-b\right)^2\)

\(\Leftrightarrow\)\(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2-b\left(a-c\right)\left(a+c-b\right)^2=0\)

Đặt:

     \(\begin{cases}a+b-c=x\\b+c-a=y\\a+c-b=z\end{cases}\)\(\hept{\Leftrightarrow\begin{cases}a=\frac{x+z}{2}\\b=\frac{x+y}{2}\\c=\frac{y+z}{2}\end{cases}}\)

\(\Leftrightarrow\)\(\frac{x+z}{2}\left(\frac{x+y}{2}-\frac{y+z}{2}\right)y^2+\frac{y+z}{2}\left(\frac{x+z}{2}-\frac{x+y}{2}\right)x^2-\frac{x+y}{2}\left(\frac{x+z}{2}-\frac{y+z}{2}\right)z^2=0\)

\(\Leftrightarrow\frac{x+z}{2}\times\frac{x-z}{2}\times y^2+\frac{z+y}{2}\times\frac{z-y}{2}\times x^2-\frac{x+y}{2}\times\frac{x-y}{2}\times z^2=0\)

\(\Leftrightarrow\frac{1}{4}\left(x+z\right)\left(x-z\right)y^2+\frac{1}{4}\left(z+y\right)\left(z-y\right)x^2-\frac{1}{4}\left(x+y\right)\left(x-y\right)z^2=0\)

\(\Leftrightarrow\frac{1}{4}\left[\left(x^2-z^2\right)y^2+\left(z^2-y^2\right)x^2\right]-\frac{1}{4}\left(x^2-y^2\right)z^2=0\)

\(\Leftrightarrow\frac{1}{4}\left(x^2y^2-z^2y^2+x^2z^2-x^2y^2\right)-\frac{1}{4}\left(x^2-y^2\right)z^2=0\)

\(\Leftrightarrow\frac{1}{4}\left(x^2-y^2\right)z^2-\frac{1}{4}\left(x^2-y^2\right)z^2=0\)

Vậy \(a\left(b-c\right)\left(b+c-a\right)^2+c\left(a-b\right)\left(a+b-c\right)^2=\)\(b\left(a-c\right)\left(a+c-b\right)^2\)