Tìm x biết x + \(\frac{3}{2}=1+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2006}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)=\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)\)
\(\Rightarrow\left(\frac{x+1}{2009}+\frac{2009}{2009}\right)+\left(\frac{x+2}{2008}+\frac{2008}{2008}\right)=\left(\frac{x+3}{2007}+\frac{2007}{2007}\right)+\left(\frac{x+4}{2006}\frac{2006}{2006}\right)\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}=\frac{x+2010}{2007}+\frac{x+2010}{2006}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}-\frac{x+2010}{2007}-\frac{x+2010}{2006}=0\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\)
=>x+2010=0
=>x=-2010
Vậy x = -2010
Trừ 1 đi ở mỗi phân số, ta có:
\(\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)
\(\Rightarrow\frac{x-1}{2009}-\frac{2009}{2009}+\frac{x-2}{2008}-\frac{2008}{2008}=\frac{x-3}{2007}-\frac{2007}{2007}+\frac{x-4}{2006}-\frac{2006}{2006}\)
\(\Rightarrow\frac{x-1-2009}{2009}+\frac{x-2-2008}{2008}=\frac{x-3-2007}{2007}+\frac{x-4-2006}{2006}\)
\(\Rightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(\Rightarrow\left[x-2010\right]\left[\frac{1}{2009}+\frac{1}{2008}\right]=\left[x-2010\right]\left[\frac{1}{2007}+\frac{1}{2006}\right]\)
Sẽ có hai trường hợp
TH1: Cả hai vế đều bằng 0
Ta có: \(\hept{\begin{cases}\frac{1}{2009}+\frac{1}{2008}\ne0\\\frac{1}{2007}+\frac{1}{2006}\ne0\end{cases}}\Rightarrow x-2010=0\Rightarrow x=2010\)
TH2: Cả hai vế khác 0
Ta bỏ đi x - 2010 vì cả hai bên đều có
\(\Rightarrow\frac{1}{2009}+\frac{1}{2008}=\frac{1}{2007}+\frac{1}{2006}\)Vô lí
Vậy x = 2010
1) \(\frac{x+4}{2005}\)\(+\)\(\frac{x+3}{2006}\)= \(\frac{x+2}{2007}\)\(+\)\(\frac{x+1}{2008}\)
\(\Leftrightarrow\) \(\frac{x+4}{2005}\)\(+\)1 \(+\)\(\frac{x+3}{2006}\)\(+\)1 = \(\frac{x+2}{2007}\)\(+\)1 \(+\)\(\frac{x+1}{2008}\)\(+\)1
\(\Leftrightarrow\)\(\frac{x+2009}{2005}\)+ \(\frac{x +2009}{2006}\)= \(\frac{x+2009}{2007}\)+\(\frac{x+2009}{2008}\)
\(\Leftrightarrow\)(x + 2009)(1/2005 + 1/2006) = (x + 2009)(1/2007 + 1/2008)
\(\Leftrightarrow\)(x + 2009)(1/2005 + 1/2006 - 1/2007 - 1/2008) = 0
Ta thấy: 1/2005 + 1/2006 - 1/2007 - 1/2008 \(\ne\)0
\(\Leftrightarrow\)x + 2009 = 0
\(\Leftrightarrow\)x = -2009
d,
\(|x-\frac{1}{3}|=\frac{5}{6}\Rightarrow \left[\begin{matrix} x-\frac{1}{3}=\frac{5}{6}\\ x-\frac{1}{3}=-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{7}{6}\\ x=\frac{-1}{2}\end{matrix}\right.\)
e,
\(\frac{3}{4}-2|2x-\frac{2}{3}|=2\)
\(\Leftrightarrow 2|2x-\frac{2}{3}|=\frac{3}{4}-2=\frac{-5}{4}\)
\(\Leftrightarrow |2x-\frac{2}{3}|=-\frac{5}{8}<0\) (vô lý vì trị tuyệt đối của 1 số luôn không âm)
Vậy không tồn tại $x$ thỏa mãn đề bài.
f,
\(\frac{2x-1}{2}=\frac{5+3x}{3}\Leftrightarrow 3(2x-1)=2(5+3x)\)
\(\Leftrightarrow 6x-3=10+6x\)
\(\Leftrightarrow 13=0\) (vô lý)
Vậy không tồn tại $x$ thỏa mãn đề bài.
a,
$0-|x+1|=5$
$|x+1|=0-5=-5<0$ (vô lý do trị tuyệt đối của một số luôn không âm)
Do đó không tồn tại $x$ thỏa mãn điều kiện đề.
b,
\(2-|\frac{3}{4}-x|=\frac{7}{12}\)
\(|\frac{3}{4}-x|=2-\frac{7}{12}=\frac{17}{12}\)
\(\Rightarrow \left[\begin{matrix} \frac{3}{4}-x=\frac{17}{12}\\ \frac{3}{4}-x=\frac{-17}{12}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{-2}{3}\\ x=\frac{13}{6}\end{matrix}\right.\)
c,
\(2|\frac{1}{2}x-\frac{1}{3}|-\frac{3}{2}=\frac{1}{4}\)
\(2|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{4}\)
\(|\frac{1}{2}x-\frac{1}{3}|=\frac{7}{8}\)
\(\Rightarrow \left[\begin{matrix} \frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\ \frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{29}{12}\\ x=\frac{-13}{12}\end{matrix}\right.\)
\(1+\frac{1+\frac{1+\frac{3}{2}}{2}}{2}=1+\frac{1+\frac{\frac{5}{2}}{2}}{2}=1+\frac{1+\frac{5}{4}}{2}=1+\frac{\frac{9}{4}}{2}=1+\frac{9}{8}=\frac{17}{8}\)
\(1+\frac{2}{1+\frac{2}{1+\frac{2}{3}}}=1+\frac{2}{1+\frac{2}{\frac{5}{3}}}=1+\frac{2}{1+\frac{6}{5}}=1+\frac{2}{\frac{11}{5}}=1+\frac{10}{11}=\frac{21}{11}\)
\(1+\frac{1+\frac{1+\frac{2}{3}}{3}}{3}=1+\frac{1+\frac{\frac{5}{3}}{3}}{3}=1+\frac{1+\frac{5}{9}}{3}=1+\frac{\frac{14}{9}}{3}=1+\frac{14}{27}=\frac{41}{27}\)
\(\frac{3}{\frac{3}{\frac{3}{\frac{3}{2}+1}+1}+1}+1=1+\frac{3}{\frac{3}{\frac{3}{\frac{5}{2}}+1}+1}=1+\frac{3}{\frac{3}{\frac{6}{5}+1}+1}=1+\frac{3}{\frac{15}{11}+1}=\frac{59}{26}\)
suy ra
\(\frac{\frac{17}{18}}{\frac{21}{11}}-x=\frac{187}{378}-x=\frac{\frac{41}{27}}{\frac{59}{26}}=\frac{1066}{1593}\Rightarrow x=-\frac{1297}{7434}\)
1. a) \(\frac{3}{4}-\frac{-1}{2}+\frac{1}{3}=\frac{3}{4}+\frac{1}{2}+\frac{1}{3}=\frac{9}{12}+\frac{6}{12}+\frac{4}{12}=\frac{19}{12}\)
b) \(5\frac{5}{27}+\frac{7}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}\)
\(=\frac{140}{27}-\frac{5}{27}+\frac{7}{23}+\frac{16}{23}+\frac{1}{2}\)
\(=\frac{135}{27}+\frac{23}{23}+\frac{1}{2}\)
\(=5+1+0,5=6,5\)
2) a) 1/2 + 2/3x = 1/4
=> 2/3x = 1/4 - 1/2
=> 2/3x = -1/4
=> x = -1/4 : 2/3
=> x = -3/8
b) 3/5 + 2/5 : x = 3 1/2
=> 3/5 + 2/5 : x = 7/2
=> 2/5 : x = 7/2 - 3/5
=> 2/5 : x = 29/10
=> x = 2/5 : 29/10
=> x = 4/29
c) x+4/2004 + x+3/2005 = x+2/2006 + x+1/2007
=> x+4/2004 + 1 + x+3/2005 + 1 = x+2/2006 + 1 + x+1/2007 + 1
=> x+2008/2004 + x+2008/2005 = x+2008/2006 + x+2008/2007
=> x+2008/2004 + x+2008/2005 - x+2008/2006 - x+2008/2007 = 0
=> (x+2008). (1/2004 + 1/2005 - 1/2006 - 1/2007) = 0
Vì 1/2004 + 1/2005 - 1/2006 - 1/2007 khác 0
Nên x + 2008 = 0 <=> x = -2008
Vậy x = -2008
1,a,\(\frac{3}{4}-\frac{-1}{2}+\frac{1}{3}=\frac{3}{4}+\frac{2}{4}+\frac{1}{3}=\frac{5}{4}+\frac{1}{3}=\frac{15}{12}+\frac{4}{12}=\frac{19}{12}\)
b, \(5\frac{5}{27}+\frac{7}{23}+\frac{1}{2}-\frac{5}{27}+\frac{16}{23}=\frac{140}{27}-\frac{5}{27}+\frac{7}{23}+\frac{16}{23}+\frac{1}{2}=\frac{135}{27}+\frac{23}{23}+\frac{1}{2}=5+1+\frac{1}{2}=\frac{13}{2}\)2,a,\(\frac{1}{2}+\frac{2}{3}.x=\frac{1}{4}\)
<=>\(\frac{2}{3}.x=-\frac{1}{2}\)
<=>\(x=-\frac{3}{4}\)
b,\(\frac{3}{5}+\frac{2}{5}\div x=3\frac{1}{2}\)
<=>\(\frac{2}{5x}=\frac{29}{10}\)
<=>\(x=\frac{29}{4}\)
c,\(\frac{x+4}{2004}+\frac{x+3}{2005}=\frac{x+2}{2006}+\frac{x+1}{2007}\)
<=> \(\frac{x+4}{2004}+1+\frac{x+3}{2005}+1=\frac{x+2}{2006}+1+\frac{x+1}{2007}+1\)
<=>\(\frac{x+2008}{2004}+\frac{x+2008}{2005}=\frac{x+2008}{2006}+\frac{x+2008}{2007}\)
<=>\(\left(x+2008\right)\left(\frac{1}{2004}+\frac{1}{2005}-\frac{1}{2006}-\frac{1}{2007}\right)\)=0
<=>x+2008=0 vì cái ngoặc còn lại\(\ne0\)
<=>x=-2008
Vậy x=-2008
Bạn nhớ tk cho mình vì mình đã chăm chỉ làm hết bài bạn hỏi nha!
X-1/2009 + X-2/2008 = X-3/2007 + X-4/2006
thôi nói cho nhanh nhé
bạn trừ 1 vào tất cả các giá trị VD: (X-1/2009)-1. Ta được tử chung là X-2010 cứ thế mà đặt ra làm thôi. Ko dc thì bảo tớ chỉ tiếp.
x + 32=1+132+133+...+132006
=>3.(x+\(\frac{3}{2}\))=3.(1+\(\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2006}}\))
=>3(x+\(\frac{3}{2}\))=3+\(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^{2005}}\)
=>3(x+\(\frac{3}{2}\))-(x+\(\frac{3}{2}\))=(3+\(1+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2005}}\))-(1+132+133+...+132006)
=>2(x+\(\frac{3}{2}\))=3-\(\frac{1}{3^{2006}}\)
=>2(x+\(\frac{3}{2}\))=\(\frac{3^{2007}}{3^{2006}}\)-\(\frac{1}{3^{2006}}\)
=>2(x+\(\frac{3}{2}\))=\(\frac{3^{2007}-1}{3^{2006}}\)
=>x+\(\frac{3}{2}\)=\(\frac{3^{2007}-1}{3^{2006}}:2\)
=>x+\(\frac{3}{2}=\frac{3^{2007}-1}{3^{2006}.2}\)
=>x=\(\frac{3^{2007}-1}{3^{2006}.2}-\frac{3}{2}\)