K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2015

 Đặt ước chung nguyên tố lớn nhất của ab và a+b là d . 
=> 
ab :/ d ( :/ là kí hiệu chia hết của rieng tui ) => 

[ a :/ d ( do d nguyên tố ) , mà a+b :/d => b :/ d 
[ b :/ d ......................... , mà a+ b :/d => a:/d 

tóm lại cả a và b đều chia hết cho d . d nguyên tố => d >1 => ( a ,b ) > 1 . Vô lý 

=> d =1 

Vậy ( ab , a+b ) =1 

24 tháng 11 2015

Gọi ƯCLN (a,a-b) =d

Ta phải CM d=1

=>a chia hết cho d

a-b chia hết cho d

=> b chia hết cho d

=> d thuộc ƯC(a,b) ( d là Ư nguyên tố)

Mà ƯCLN (a,b) =1 => ƯC(a,b)=Ư(1)=1

=>d=1

Vậy,...

9 tháng 8 2021

câu hỏi? 

9 tháng 8 2021

Tìm min

 

3 tháng 2 2017

\(a\sqrt{b-1}+b\sqrt{a-1}\Leftrightarrow\sqrt{a}\sqrt{ab-a}+\sqrt{b}\sqrt{ab-b}\)

\(\le\sqrt{\left(a+b\right)\left(2ab-a-b\right)}\le\frac{a+b-a-b+2ab}{2}=ab\)

BĐT đc chứng minh

3 tháng 2 2017

\(x=\sqrt{a-1};y=\sqrt{b-1}\) bỏ căn đi viết cho dẽ nhìn

\(x^2=a-1;y^2=b-1\Leftrightarrow\left(x^2+1\right)y+\left(y^2+1\right)x\le\left(x^2+1\right)\left(y^2+1\right)\)

\(\Leftrightarrow\left(x^2+1\right)\left(y^2-2y+1\right)+\left(y^2+1\right)\left(x^2-2x+1\right)\ge0\)

\(\Leftrightarrow\left(x^2+1\right)\left(y-1\right)^2+\left(y^2+1\right)\left(x-1\right)^2\ge0\)Đúng với mọi x,y => dpcm

Đẳng thức khi x=y=1=> a=b=2

31 tháng 8 2018

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Chọn A

a: \(A=\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)

\(=\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+\dfrac{100}{100}\)

\(=100\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)=100B

=>B/A=1/100

b: \(A=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\left(1\right)\)

\(=\dfrac{50}{49}+\dfrac{50}{48}+....+\dfrac{50}{2}+\dfrac{50}{50}\)

\(=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)

\(B=\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{49}+\dfrac{2}{50}\)

\(=2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)

=>A/B=25

7 tháng 7 2019

a) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\) 

  \(a^2+b^2+c^2+2ab+2ac+2bc-3ab-3ac-3bc=0\) 

 \(a^2+b^2+c^2-ab-ac-bc=0\) 

\(2\left(a^2+b^2+c^2-ab-ac-bc\right)=0\) 

 \(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\) 

\(\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\) 

\(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\) 

\(\Rightarrow a=b=c\left(đpcm\right)\)

4 tháng 7 2017

biet ab+bc+ca=1CMR (a^2+1)(b^2+1)/(c^2+1)+(b^2+1)(c^2+1)/(a^2+1)+(a^2+1)(b^2+1)/(c^2+1) la binh phuong 1 so huu ti

2 tháng 10 2021

\(1,\)

Áp dụng BĐT Bunhiacopski:

\(A^2=\left(\sqrt{3-x}+\sqrt{x+7}\right)^2\le\left(1^2+1^2\right)\left(3-x+x+7\right)=2\cdot10=20\)

Dấu \("="\Leftrightarrow3-x=x+7\Leftrightarrow x=-2\)

 

2 tháng 10 2021

\(A^2=3-x+x+7+2\sqrt{\left(3-x\right)\left(x+7\right)}\\ A^2=10+2\sqrt{\left(3-x\right)\left(x+7\right)}\ge10\)

Dấu \("="\Leftrightarrow\left(3-x\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-7\end{matrix}\right.\)

NV
8 tháng 1 2023

Đặt vế trái BĐT cần chứng minh là P, ta có:

\(\dfrac{ab}{a^2+b^2}+\dfrac{bc}{b^2+c^2}+\dfrac{ca}{c^2+a^2}=\dfrac{1}{c\left(a^2+b^2\right)}+\dfrac{1}{a\left(b^2+c^2\right)}+\dfrac{1}{b\left(c^2+a^2\right)}\)

\(\ge\dfrac{9}{a\left(b^2+c^2\right)+b\left(c^2+a^2\right)+c\left(a^2+b^2\right)}\ge\dfrac{9}{2\left(a^3+b^3+c^3\right)}\)

\(\Rightarrow P\ge a^3+b^3+c^3+\dfrac{9}{2\left(a^3+b^3+c^3\right)}\ge3\sqrt[3]{\left(\dfrac{a^3+b^3+c^3}{2}\right)^2.\dfrac{9}{2\left(a^3+b^3+c^3\right)}}\)

\(=3\sqrt[3]{\dfrac{9\left(a^3+b^3+c^3\right)}{8}}\ge3\sqrt[3]{\dfrac{27abc}{8}}=\dfrac{9}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)