Cho x,y,z là các số dương CMR:
A) x/y + y/x >= z
B) (x + y + 2) (1/x + 1/y + 1/2) >= y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x,y,z là các số nguyên dương nên ta có:
\(\frac{x}{x+y}>\frac{x}{x+y+z};\frac{y}{y+z}>\frac{y}{y+z+x};\frac{z}{z+x}>\frac{z}{z+x+y}\)
\(\Rightarrow A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x}{x+y+z}+\frac{y}{y+z+x}+\frac{z}{z+x+y}\)
mà \(\frac{x}{x+y+z}+\frac{y}{y+z+x}+\frac{z}{z+x+y}=\frac{x+y+z}{x+y+z}=1\)
=> A>1
\(2.\) Bạn nghiêm túc gửi câu hỏi nhé!. Mình có lời giải rồi
Áp dụng Bunhiacopxki dạng phân thức:
\(VT=\frac{2}{x+y}+\frac{2}{y+z}+\frac{2}{z+x}\ge\frac{\left(\sqrt{2}.3\right)^2}{2\left(x+y+z\right)}=\frac{9}{x+y+z}\)
Dấu "=" khi x = y = z > 0
cũng là Cauchy-Schwarz dạng Engel nhưng làm khác idol :))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\ge\frac{\left(1+1+1\right)^2}{x+y+y+z+z+x}=\frac{9}{2\left(x+y+z\right)}\)
=> \(2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\ge\frac{9}{2\left(x+y+z\right)}\cdot2=\frac{9}{x+y+z}\left(đpcm\right)\)
Đẳng thức xảy ra <=> x=y=z
ta có : \(\frac{x}{x+y}>\frac{x}{x+y+z}\left(1\right)\); \(\frac{y}{y+z}>\frac{y}{y+z+z}\left(2\right)\); \(\frac{z}{z+x}>\frac{z}{z+x+y}\left(3\right).\)
cộng vế với vế các BĐT (1), (2), (3) ta được:
\(\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{z+x}>\frac{x+y+z}{x+y+z}=1.\)(đpcm )
cái (2) gõ nhầm phím . nhé \(\frac{y}{y+z}>\frac{y}{y+z+x}\)
\(\frac{1}{x^2+2yz}+\frac{1}{y^2+2zx}+\frac{1}{z^2+2xy}\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}=\frac{9}{\left(x+y+z\right)^2}=9\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
a) sai đề.
Sửa:\(\frac{x}{y}+\frac{y}{x}\ge2\)
Áp dụng BĐT AM-GM ta có:
\(\frac{x}{y}+\frac{y}{x}\ge2.\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Dấu " = " xảy ra <=> x=y
b) \(\left(x+y+2\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{2}\right)\ge9\)
Áp dụng BĐT AM-GM ta có:
\(\left(x+y+2\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{2}\right)\ge3.\sqrt[3]{2xy}.\frac{3}{\sqrt[3]{2xy}}=9\)
Dấu " = " xảy ra <=> x=y=2