K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Y
6 tháng 5 2019

+ \(P=\frac{x}{y^2+1}+\frac{1}{y^2+1}+\frac{y}{z^2+1}+\frac{1}{z^2+1}+\frac{z}{x^2+1}+\frac{1}{x^2+1}\)

+ \(\frac{1}{x^2+1}=\frac{x^2+1-x^2}{x^2+1}=1-\frac{x^2}{x^2+1}\)

+ \(x^2+1\ge2x\forall x\)

\(\Rightarrow\frac{x^2}{x^2+1}\le\frac{x^2}{2x}=\frac{x}{2}\)

\(\Rightarrow-\frac{x^2}{x^2+1}\ge-\frac{x}{2}\)

\(\Rightarrow\frac{1}{x^2+1}\ge1-\frac{x}{2}\)

Dấu "=" xảy ra <=> x = 1

+ Tương tự ta cm đc :

\(\frac{1}{y^2+1}\ge1-\frac{y}{2}\). Dấu "=" xảy ra <=> y = 1

\(\frac{1}{z^2+1}\ge1-\frac{z}{2}\). Dấu "=" xảy ra <=> z = 1

Do đó : \(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge3-\left(\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\right)\)

\(\Rightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge3-\frac{3}{2}=\frac{3}{2}\) (1)

Dấu "=" xảy ra <=> x = y = z = 1.

+ \(\frac{x}{y^2+1}=\frac{x\left(y^2+1\right)-xy^2}{y^2+1}=x-\frac{xy^2}{y^2+1}\)

\(\Rightarrow\frac{x}{y^2+1}\ge x-\frac{xy^2}{2y}=x-\frac{xy}{2}\) ( do \(y^2+1\ge2y\forall y\) )

Dấu "=" xảy ra <=> y = 1.

Tương tự : \(\frac{y}{z^2+1}\ge y-\frac{yz}{2}\). Dấu "=" xảy ra <=> z = 1.

\(\frac{z}{x^2+1}\ge z-\frac{zx}{2}\). Dấu "=" xảy ra <=> x = 1.

Do đó : \(\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge\left(x+y+z\right)-\frac{xy+yz+zx}{2}\)

\(\Rightarrow\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge3-\frac{\frac{\left(x+y+z\right)^2}{3}}{2}\)

( do \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) )

\(\Rightarrow\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge3-\frac{3}{2}=\frac{3}{2}\) (2)

Dấu "=" xảy ra <=> x = y = z = 1.

Từ (1) và (2) suy ra

\(P\ge\frac{3}{2}+\frac{3}{2}=3\)

P = 3 \(\Leftrightarrow x=y=z=1\)

Vậy Min P = 3 \(\Leftrightarrow x=y=z=1\).

9 tháng 2 2019

Ta có: \(\frac{x+1}{y^2+1}=\left(x+1\right).\frac{1}{y^2+1}=\left(x+1\right)\left(1-\frac{y^2}{y^2+1}\right)\)

\(\ge\left(x+1\right)\left(1-\frac{y^2}{2y}\right)=x+1-\frac{y\left(x+1\right)}{2}\)

Thiết lập hai BĐT còn lại tương tự và cộng theo vế:

\(P\ge\left(x+y+z+3\right)-\frac{x\left(z+1\right)+y\left(x+1\right)+z\left(y+1\right)}{2}\)

\(=6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\) (*)

Lại có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\)

Thật vậy,ta có: BĐT \(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca\ge3ab+3bc+3ca\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca\ge0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (luôn đúng)

Thay vào (*),ta có: \(P\ge6-\frac{\left(xy+yz+zx\right)+\left(x+y+z\right)}{2}\)

\(\ge6-\frac{\frac{\left(x+y+z\right)^2}{3}+3}{2}=6-\frac{3+3}{2}=3\)

Dấu "=" xảy ra \(\Leftrightarrow x^2=y^2=z^2=1\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=3\Leftrightarrow x=y=z=1\)

9 tháng 2 2019

Bài t đúng 100% nhá,đứa nào tk sai t nhở? ngon vô làm lại=)

26 tháng 5 2019

áp dụng bất đẳng thức Cauchy ta có :

\(\frac{\left(x-1\right)^2}{z}+\frac{z}{4}\ge2\sqrt{\frac{\left(x-1\right)^2}{z}\frac{z}{4}}=|x-1|=1-x.\)

\(\frac{\left(y-1\right)^2}{x}+\frac{x}{4}\ge2\sqrt{\frac{\left(y-1\right)^2}{x}\frac{x}{4}}=|y-1|=1-y.\)

\(\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge2\sqrt{\frac{\left(z-1\right)^2}{y}\frac{y}{4}}=|z-1|=1-z.\)

\(\Rightarrow\frac{\left(x-1\right)^2}{z}+\frac{z}{4}+\frac{\left(y-1\right)^2}{x}+\frac{x}{4}+\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge1-x+1-y+1-z.\)

\(\Leftrightarrow\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge3-\left(x+y+z\right)-\frac{x+y+z}{4}=3-2-\frac{2}{4}=\frac{1}{2}.\)

Vậy GTNN của \(A=\frac{1}{2}\Leftrightarrow x=y=z=\frac{2}{3}.\)

26 tháng 5 2019

1. Cho 3 số thực x,y,z thỏa mãn x+y+z=xyz và x,y,z>1

Tìm GTNN của P= x-1/y+y-1/x+ x-1/x2

               Giải

Từ gt⇒1xy+1yz+1zx=1⇒1xy+1yz+1zx=1

Theo AM-GM ta có:

P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥√3∑1xy+∑1xy−2=√3−1P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥3∑1xy+∑1xy−2=3−1

Dấu = xảy ra⇔x=y=z=1√3

P/S: ĐỀ BÀI TƯƠNG TỰ NÊN BẠN TỰ LÀM NHA !! CHÚC HOK TỐT!