Cho B= 3-3^2+3^3-3^4+3^5-3^6+...+3^35-3^36.
Chứng minh B chia hết cho 420.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Biểu thức $B$ không có GTLN bạn nhé. Chỉ có GTNN thôi.
b.
$C=(3-3^2+3^3-3^4)+(3^5-3^6+3^7-3^8)+....+(3^{21}-3^{22}+3^{23}-3^{24})$
$=(3-3^2+3^3-3^4)+3^4(3-3^2+3^3-3^4)+....+3^{20}(3-3^2+3^3-3^4)$
$=(3-3^2+3^3-3^4)(1+3^4+...+3^{20})=-60(1+3^4+...+3^{20})\vdots 60(*)$
Mặt khác:
$C=(3-3^2+3^3)-(3^4-3^5+3^6)+.....-(3^{22}-3^{23}+3^{24})$
$=3(1-3+3^2)-3^4(1-3+3^2)+...-3^{22}(1-3+3^2)$
$=(1-3+3^2)(3-3^4+...-3^{22})=7(3-3^4+...-3^{22})\vdots 7(**)$
Từ $(*); (**)$ mà $(7,60)=1$ nên $C\vdots (7.60)$ hay $C\vdots 420$
\(C=3-3^2+3^3-3^4+3^5-3^6+...-3^{22}+3^{23}-3^{24}\)
\(=\left(3-3^2+3^3\right)-\left(3^4-3^5+3^6\right)+...-\left(3^{22}-3^{23}+3^{24}\right)\)
\(=3\left(1-3+3^2\right)-3^4\left(1-3+3^2\right)+...-3^{22}\left(1-3+3^2\right)\)
\(=7\left(3-3^4+...-3^{22}\right)⋮7\)
\(C=3-3^2+3^3-3^4+3^5-3^6+...-3^{22}+3^{23}-3^{24}\)
\(=\left(3-3^2+3^3-3^4\right)+\left(3^5-3^6+3^7-3^8\right)+...+\left(3^{21}-3^{22}+3^{23}-3^{24}\right)\)
\(=3\left(1-3+3^2-3^3\right)+3^5\left(1-3+3^2-3^3\right)+...+3^{21}\left(1-3+3^2-3^3\right)\)
\(=-20\cdot\left(3+3^5+...+3^{21}\right)\)
\(=-60\cdot\left(1+3^4+...+3^{20}\right)⋮60\)
\(C⋮60;C⋮7\)
mà ƯCLN(60;7)=1
nên C chia hết cho 60*7=420
a: Sửa đề: Tìm GTNN
B=|x-2022|+|x-1|>=|x-2022+1-x|=2021
Dấu = xảy ra khi 1<=x<=2022
b: C=(3-3^2+3^3)-3^3(3-3^2+3^3)+...-3^21(3-3^2+3^3)
=21(1-3^3+3^6-...-3^21) chia hết cho 21
C=(3-3^2+3^3-3^4)+3^4(3-3^2+3^3-3^4)+...+3^20(3-3^2+3^3-3^4)
=-60(1+3^4+...+3^20) chia hết cho 60
=>A chia hết cho BCNN(21;60)=420
A=2^1+2^2+2^3+2^4+...+2^2010
=(2+2^2)+(2^3+2^4)+...+(2^2010+2^2011)
=2.(1+2)+2^3.(1+2)+...+2^2010.(1+2)
=2.3+2^3.3+...+2^2010.3
=(2+2^3+2^2010).3
=> A chia het cho 3
1, \(\overline{a45b}\) \(⋮\) 2; 3; 5; 9
⇒ b = 0; a + 4 + 5 + b ⋮ 9 ⇒ a + 9 ⋮ 9 ⇒ a = 9
Vậy \(\overline{a45b}\) = 9450
2, \(\overline{a1b8}\) \(⋮\) 2;3;9 ⇔ a + 1 + b + 8 ⋮ 9 ⇒ a + b ⋮ 9
⇒ b = 0; 1; 2; 3; 4; 5; 6; 7; 8
a = 9; 8; 7; 6; 5; 4; 3; 2; 1
\(\Rightarrow\) \(\overline{a1b8}\) = 9108; 8118; 7128; 6138; 5148; 4158; 3168; 2178; 1188
3, 2025 + \(\overline{a36}\) \(⋮\) 3
⇔ 2 + 0 + 2 + 5 + a + 3 + 6 ⋮ 3
18 + a ⋮ 3
a ⋮ 3
a = 0; 3; 6; 9
4, 125 + 5100 + \(\overline{31a}\) ⋮ 5
⇔ \(\overline{31a}\) ⋮ 5
a ⋮ 5
a = 0; 5
a) 136 + 420 có chữ số tận cùng là 6 chia hết cho 2 và không chia hết cho 5
b) 625 - 450 có chữ số tận cùng là 5 chia hết cho 5 và không chia hết cho 2
c) 1.2.3.4.5.6 + 42
Vì 5.6 có tận cùng = 0 => 1.2.3.4.5.6 có tận cùng = 0
=> 1.2.3.4.5.6 + 42 có tận cùng = 2 chia hết cho 2 và không chia hết cho 5.
d) tương tự câu c, 1.2.3.4.5.6 có tận cùng = 0
=> 1.2.3.4.5.6 - 35 có tận cùng = 5 chia hết cho 5 và không chia hết cho 2