Làm theo kiểu đồng dư thức nhé. Làm nhanh giùm mình, mình cần gấp
1, Tìm dư của 1994^2005 cho 7
2, Chứng minh A= 6^1000-1
và B = 6^1001+1 đều là bội của 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, B = (1+2)+(2^2+2^3+2^4)+(2^5+2^6+2^7)+.....+(2^2003+2^2004+2^2005)
= 3+2^2.(1+2+2^2)+2^5.(1+2+2^2)+.....+2^2003.(1+2+2^2)
= 3+2^2.7+2^5.7+.....+2^2003.7
= 3+7.(2^2+2^5+.....+2^2003) chia 7 dư 3
b, 2B = 2+2^2+....+2^2006
B=2B-B=(2+2^2+....+2^2006)-(1+2+2^2+.....+2^2005) = 2^2006-1
Xét : 2^2006 = 2^2.2^2004 = 4.(2^4)^501 = 4.(16)^501 = 4 . ....6 = ....4 có tận cùng là 4
=> B có tận cùng là 4-1=3
Tk mk nha
Ta có:6=-1 (mod 7) => 6^1000=1(mod 7) => 6^1000-1 chia hết cho 7
Vậy A là bội của 7
Từ 6^1000=1(mod 7) => 6^1001=6(mod 7), mà 6=-1(mod 7)
=> 6^1001=-1(mod 7) => 6^1001+1 chia hết cho
Vậy B là bội của 7