Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, B = (1+2)+(2^2+2^3+2^4)+(2^5+2^6+2^7)+.....+(2^2003+2^2004+2^2005)
= 3+2^2.(1+2+2^2)+2^5.(1+2+2^2)+.....+2^2003.(1+2+2^2)
= 3+2^2.7+2^5.7+.....+2^2003.7
= 3+7.(2^2+2^5+.....+2^2003) chia 7 dư 3
b, 2B = 2+2^2+....+2^2006
B=2B-B=(2+2^2+....+2^2006)-(1+2+2^2+.....+2^2005) = 2^2006-1
Xét : 2^2006 = 2^2.2^2004 = 4.(2^4)^501 = 4.(16)^501 = 4 . ....6 = ....4 có tận cùng là 4
=> B có tận cùng là 4-1=3
Tk mk nha
Ta có:6=-1 (mod 7) => 6^1000=1(mod 7) => 6^1000-1 chia hết cho 7
Vậy A là bội của 7
Từ 6^1000=1(mod 7) => 6^1001=6(mod 7), mà 6=-1(mod 7)
=> 6^1001=-1(mod 7) => 6^1001+1 chia hết cho
Vậy B là bội của 7
Bài 1 :
BCNN( a , b ) = 60
Có a = 12
b = ?
Phân tích ra có 12 = 2^2 . 3
Giờ ta xét 2 trường hợp :
+ 1 : b chia hết cho a
b chia hết cho a
=> BCNN( a , b ) = b
Mà BCNN( a , b ) = 60
=> b = 60
+ 2 : b không chia hết cho a ( với trường hợp này thì b < 60 )
Trong trường hợp này ta lại có các trường hợp khác :
+a1 : b và a khi phân tích ra thừa số nguyên tố đều được những số khác nhau .
=> BCNN( a , b ) = a.b = 60
Thay a = 12
=> b = 60 : 12 = 5
+a2 : b và a khi phân tích ra thừa số nguyên tố được 1 số giống nhau ( hai số này cùng mũ và mũ của a > b )
+a3 : b và a khi phân tích ra thừa số nguyên tố được 1 số giống nhau ( hai số này cùng mũ và mũ a < b )
....
Tự tìm các trường hợp khác .
Bài 2 : Vì a chia hết cho 7
=> a thuộc B(7)
Vì a chia cho 4 và 6 đều dư 1
=> a + 1 chia hết cho 4 và 6
=> a + 1 thuộc BC( 4,6)
4 = 2^2
6 = 2 . 3
BCNN(4,6) = 2^2 . 3 = 12
a + 1 thuộc BC( 4 , 6 ) = B(12) = { 0 ; 12 ; 24 ; 36 ; 48 ; 60 ; 72 ; ... }
=> a thuộc { -1 ; 11 ; 23 ; 35 ; 47 ; 59 ; 71 ; .... }
=> a = 119