K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2017

ĐẶT A=\(\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)

  \(\frac{1}{3}A=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2006}}\)

\(\frac{1}{3}A-A=\frac{1}{3^{2006}}-\frac{1}{3^0}\)

\(\frac{-2}{3}A=\frac{1}{3^{2006}}-\frac{1}{3^0}\)

\(A=\frac{\frac{1}{3^{2006}}-1}{\frac{-2}{3}}\)

\(A=\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)

\(\Rightarrow3A=1+\frac{1}{3^0}+\frac{1}{3^1}+...+\frac{1}{3^{2004}}\)

\(\Rightarrow2A=1-\frac{1}{3^{2005}}\)

\(\Rightarrow A=\frac{3^{2005}-1}{3^{2005}.2}\)

13 tháng 3 2020

cảm ơn thành đạt 

6 tháng 8 2016

Đặt A \(=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)

\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\)

\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)

\(\Rightarrow2A=1-\frac{1}{3^{2005}}\)

\(\Rightarrow A=\left(1-\frac{1}{3^{2005}}\right):2\)

6 tháng 8 2016

\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)

\(\Leftrightarrow3A=1+\frac{1}{3}+...+\frac{1}{3^{2004}}\)

\(\Leftrightarrow3A-A=1-\frac{1}{3^{2005}}\)

\(\Leftrightarrow A=\frac{1-\frac{1}{3^{2005}}}{2}\)

11 tháng 7 2018

a) \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2015}}\)

\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2014}}\)

\(\Rightarrow3B-B=1-\frac{1}{3^{2015}}\)

\(B=\frac{1-\frac{1}{3^{2015}}}{2}\)

11 tháng 7 2018

giúp câu P luôn với bạn

11 tháng 10 2020

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

\(=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)

11 tháng 10 2020

Ta có:

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(P=\frac{1}{5}\cdot\left(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}\right)-\frac{2}{3}\cdot\left(\frac{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}{\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}}\right)\)

\(P=\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)

12 tháng 7 2017

Ta có:

\(\frac{1\div2003+1\div2004-1\div2005}{5\div2003+5\div2004-5\div2005}\)    -     \(\frac{2\div2002+2\div2003-2\div2004}{3\div2002+3\div2003-3\div2004}\)

Đơn giản đi hết ta sẽ còn:

\(\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)

2.

Ta có: 

Số khoảng cách của các số trong dãy là  23 = 8

=> Tổng của dãy dưới sẽ gấp 8 lần tổng dãy trên.

=> 3025 . 8 = 24200

23 tháng 12 2016

Bài 1:

\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

\(\Rightarrow P=\frac{1\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2002}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

\(\Rightarrow P=\frac{1}{5}-\frac{2}{3}\)

\(\Rightarrow P=\frac{-7}{15}\)

Vậy \(P=\frac{-7}{15}\)

Bài 2:
Ta có: \(S=23+43+63+...+203\)

\(\Rightarrow S=13+10+20+23+...+103+100\)

\(\Rightarrow S=\left(13+23+...+103\right)+\left(10+20+...+100\right)\)

\(\Rightarrow S=3025+450\)

\(\Rightarrow S=3475\)

Vậy S = 3475

23 tháng 12 2016

1. \(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)

=> P =\(\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)

=> P = \(\frac{1}{5}-\frac{2}{3}\)

P = \(\frac{3}{15}-\frac{10}{15}\)

=> P =\(\frac{-7}{15}\)

2. ta có:

S = 23 + 43 + 63 +...+ 203

=> S = 13 + 10 + 23 + 20 +...+ 103 + 100

=> S = ( 13 + 23+...+ 103 ) + ( 10 + 20 +...+ 100 )

=> S = 3025 + 550

=> S = 3575

Vậy S = 3575

17 tháng 6 2018

\(3S=3+\frac{1}{3}+...+\frac{1}{3^{2004}}\)

\(3S-S=\left(3+\frac{1}{3}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\right)\)

\(2S=3-\frac{1}{3^{2005}}\)

\(2S=\frac{3^{2006-1}}{3^{2005}}\)

\(S=\frac{3^{2006}-1}{3^{2005}.2}\)

17 tháng 6 2018

S = 1/3 + 1/32 + 1/33 + ... + 1/32005

=> 3S = 1 + 1/3 + 1/32 + ... + 1/32004

=> 3S - S = 1 + 1/3 + 1/32 + ... + 1/32004 - (1/3 + 1/32 + 1/33 + ... + 1/32005)

=> 2S = 1 + 1/3 + 1/32 + ... + 1/32004 - 1/3 - 1/32 - 1/33 - ... - 1/32005

=> 2S = 1 - 1/32005

=> S = \(\frac{\frac{1}{3^{2005}}}{2}\)

=> S = 1/32005.2