K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2019

\(A=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2018.2020}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2018}-\frac{1}{2020}\right)\)

\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2020}\right)\)

\(A=\frac{1}{2}.\frac{1009}{2020}\)

\(A=\frac{1009}{4040}\)

A=1/2.4+1/4.6+1/6.8+...+1/2018.2020

  =1/2(1/2-1/4+1/4-1/6+...+1/2018-1/2020)

    =1/2(1/2-1/2020)

   =1/2.1009/2020

   =1009/4040

16 tháng 5 2019

\(S=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2018.2020}\)

\(S=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2018.2020}\right)\)

\(S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2018}-\frac{1}{2020}\right)\)

\(S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2020}\right)\)

Tự tính

17 tháng 5 2019

S=1/2.4+1/4.6+1/6.8+...+1/2018.2020

S=1/2.(2/2.4+2/4.6+2/6.8+...+2/2018.2020)

S=1/2.(1-1/4+1/4-1/6+1/6-1/8+...+1/2018-1/2020)
S=1/2.(1-1/2020)

S=1/2.(2020/2020-1/2020)

S=1/2.2019/2020

S=2019/4040

30 tháng 7 2019

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2018}-\frac{1}{2020}\)

\(=\frac{1}{2}-\frac{1}{2020}=\frac{1009}{2020}\)

\(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2018.2020}\)

\(\Leftrightarrow A=\frac{1}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2018.2020}\right)\)

\(\Leftrightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{2018}-\frac{1}{2020}\right)\)

\(\Leftrightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2020}\right)=\frac{1}{2}.\frac{1009}{2020}\)

\(\Leftrightarrow A=\frac{1009}{4040}\)

Vậy : \(A=\frac{1009}{4040}\)

Sửa đề: \(\dfrac{4}{2\cdot4}+\dfrac{4}{4\cdot6}+\dfrac{4}{6\cdot8}+...+\dfrac{4}{2018\cdot2020}+\dfrac{4}{2020\cdot2022}\)

Ta có: \(\dfrac{4}{2\cdot4}+\dfrac{4}{4\cdot6}+\dfrac{4}{6\cdot8}+...+\dfrac{4}{2018\cdot2020}+\dfrac{4}{2020\cdot2022}\)

\(=2\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2018\cdot2020}+\dfrac{2}{2020\cdot2022}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2018}-\dfrac{1}{2020}+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)

\(=2\left(\dfrac{1}{2}-\dfrac{1}{2022}\right)\)

\(=2\cdot\dfrac{505}{1011}\)

\(=\dfrac{1010}{1011}\)

14 tháng 6 2019

a,A =\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{199.200}\)

= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{199}-\frac{1}{200}\)

= 1-\(\frac{1}{200}\)

=\(\frac{199}{200}\)

14 tháng 6 2019

b, B=\(\frac{3}{2.4}+\frac{3}{4.6}+\frac{3}{6.8}+...+\frac{3}{2018.2020}\)

=3.(\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+..+\frac{1}{2018.2020}\))

=3(\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+..+\frac{1}{2018}-\frac{1}{2020}\))

= 3.(\(\frac{1}{2}-\frac{1}{2020}\))

=\(\frac{6057}{2020}\)

15 tháng 6 2018

Bài 1a) \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2018.2019}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2018}-\dfrac{1}{2019}\)

\(=1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)

b) \(S=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2017.2019}\)

\(2S=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2017.2019}\)

\(2S=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2017}-\dfrac{1}{2019}\)

\(2S=1-\dfrac{1}{2019}=\dfrac{2018}{2019}\)

\(S=\dfrac{1009}{2019}\)

Còn lại bạn làm tương tự hết nhé .

11 tháng 3 2020

\(B=\frac{3}{2.4}-\frac{5}{4.6}+\frac{7}{6.8}-\frac{9}{8.10}+...+\frac{2019}{2018.2020}\)

\(B=\frac{3}{2.1.2.2}-\frac{5}{2.2.2.3}+\frac{7}{2.3.2.4}-\frac{9}{2.4.2.5}+...+\frac{2019}{2.1009.2.1010}\)

\(B=\frac{1}{4.}.\left(\frac{3}{1.2}-\frac{5}{2.3}+\frac{7}{3.4}-\frac{9}{4.5}+...+\frac{2019}{1009.1010}\right)\)

\(B=\frac{1}{4.}.\left(\frac{3}{1}-\frac{3}{2}-\frac{5}{2}+\frac{5}{3}+\frac{7}{3}-\frac{7}{4}-\frac{9}{4}+\frac{9}{5}+...+\frac{2019}{1009}-\frac{2019}{1010}\right)\)

\(B=\frac{1}{4.}.\left(\frac{3}{1}-4+4-4+4-...+4-\frac{2019}{1010}\right)\)

\(B=\frac{1}{4.}.\left(\frac{3}{1}-\frac{2019}{1010}\right)=\frac{1011}{4040}\)

1 tháng 8 2019

a, \(A=\frac{6}{10.11}+\frac{6}{11.12}+\frac{6}{12.13}+...+\frac{6}{69.70}\)

\(A=\frac{6}{10}-\frac{6}{11}+\frac{6}{11}-\frac{6}{12}+\frac{6}{12}-\frac{6}{13}+...+\frac{6}{69}-\frac{6}{70}\)

\(A=\frac{6}{10}-\frac{6}{70}\)

\(A=\frac{18}{35}\)

b, \(B=\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+...+\frac{4}{2018.2020}\)

\(B=\frac{4}{2}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2018.2020}\right)\)

\(B=2.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2018}-\frac{1}{2020}\right)\)

\(B=2.\left(\frac{1}{2}-\frac{1}{2020}\right)\)

\(B=2.\frac{1009}{2020}\)

\(B=\frac{1009}{1010}\)

Chúc bạn học tốt thanghoa

6 tháng 10 2019

vuiHơi thắc mắc câu B cậu oi!!!Gỉai thích cho mk vs ạ!!Thanks

17 tháng 3 2019

a) Ta có:

\(x-\left\{\left[-x-\left(x+3\right)\right]-\left[\left(x+2018\right)-\left(x+2019\right)\right]+21\right\}\)

\(=x-\left\{\left[-x-x-3\right]-\left[x+2018-x-2019\right]+21\right\}\)

\(=x-\left\{\left[-2x-3\right]-\left[2018-2019\right]+21\right\}\)

\(=x+2x+-3+1-21\)

\(=3x-23\)

=> \(3x-23=2020\)

\(3x=2020+23=2043\)

=> \(x=2043:3=681\)

17 tháng 3 2019

Nhầm

\(=x-\left\{-2x-3+1+21\right\}\\ =x+2x+3-1-21\)

\(=3x-17\\ =>3x-17=2020\\ 3x=2020+17=2037\\ x=2037:3=679\)

15 tháng 12 2016

A=1/2.4+1/4.6+........+1/100.102

A=1/2-1/4+1/4-1/6+.......+1/100-1/102

A=1/2-1/102

A=51/102-1/102

A=50/102

A=25/51