cho nửa đường tròn tâm O đường kính MN=2R.gọi (đ) là tiếp tuyến của nửa đường tròn (O) tai N.trên cung MN lấy điểm E tùy ý,tia ME cắt (d) tại F.gọi P là trung điểm của ME ,tia PO cắt (d) tại Q.CMR: PM.PF=PO.PQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
super easy!
theo hệ thức lượng và BĐT cô-si:
\(MF+2ME\ge2\sqrt{2MF.ME}=2\sqrt{2MN^2}=2MN\sqrt{2}\)
Vậy GTNN của MF+2ME là \(2MN\sqrt{2}\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}MF=2ME\\MF+2ME=2MN\sqrt{2}\end{cases}}\)
\(\Rightarrow\) \(2MF=2MN\sqrt{2}\)
\(\Leftrightarrow MF=MN\sqrt{2}\)
Ta có \(\sin F=\frac{MN}{MF}=\frac{1}{\sqrt{2}}\) nên \(\widehat{F}=45^0\)
Hay tam giác MNF vuông cân => ... => tam giác MNE vuông cân => ME = NE => E nằm chính giữa cung MN
p/s: làm bài tốt ko bn?
1: ΔOAM cân tại O
mà OC là trung tuyến
nên OC vuông góc AM
góc OBN+góc OCN=180 độ
=>OCNB nội tiếp
2: Xét ΔACO vuông tại C và ΔABN vuông tại B có
góc CAO chung
=>ΔACO đồng dạng với ΔABN
=>AC/AB=AO/AN
=>AC*AN=AO*AB