Cho \(a^3+b^3=2\) chứng minh \(0< a+b\le2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a^3+b^3=2>0\Rightarrow a^3>-b^3\Rightarrow a>-b\Rightarrow a+b>0\)
\(a^3+b^3=2\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)=2\)
\(\Rightarrow2=\left(a+b\right)^3-3ab\left(a+b\right)\ge\left(a+b\right)^3-\frac{3}{4}\left(a+b\right)^3=\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\left(a+b\right)^3\le8\)
\(\Rightarrow a+b\le2\)
\(\Leftrightarrow1+b^2+a^2\left(b^3+b\right)\le\left(2b^3+2\right)a^2-2\left(b^3+1\right)a+2b^3+2\)
\(\Leftrightarrow\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\ge0\)
Xét tam thức bậc 2: \(f\left(a\right)=\left(b^3-b+2\right)a^2-2\left(b^3+1\right)a+2b^3-b^2+1\)
Ta có: \(b^3+2-b\ge3b-b=2b>0\)
\(\Delta'=\left(b^3+1\right)^2-\left(b^3-b+2\right)\left(2b^3-b^2+1\right)\)
\(\Delta'=-\left(b-1\right)^2\left(b^4+b^3-b^2+b+1\right)\le0\) ; \(\forall b>0\)
\(\Rightarrow f\left(a\right)\ge0\) ; \(\forall a\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(1;1\right)\)
Bài 2:
Đặt \(a=3+x\)và \(b=3+y\)thì \(x,y\ge0\). Ta có : \(a+b=6+\left(x+y\right)\).
Ta cần chứng minh \(x+y\ge1\)
Ví dụ \(x+y< 1\)thì \(x^2+2xy+y^2< 1\)nên \(x^2+y^2< 1\)
\(\Leftrightarrow a^2+b^2=\left(x+3\right)^2+\left(y+3\right)^2=18+6\left(x+y\right)+\left(x^2+y^2\right)< 18+6+1=25\)
Điều này ngược với giả thiết ở đề bài \(ầ^2+b^2\ge25\)
Vậy \(x+y\ge1\)\(\Leftrightarrow a+b\ge7\left(dpcm\right)\)
tk mk nka !!!
Vì \(0\le a\le2;0\le b\le2;0\le c\le2\Rightarrow\left(2-a\right)\left(2-b\right)\left(2-c\right)\ge0\)\(\Leftrightarrow8-4\left(a+b+c\right)+2\left(ab+bc+ca\right)-abc\ge0\)\(\Leftrightarrow2\left(ab+bc+ca\right)\ge4\left(a+b+c\right)-8+abc\ge4\)\(\Leftrightarrow2\left(ab+bc+ca\right)\ge12-8+abc\ge4\)
\(\Rightarrow\)\(2\left(ab+bc+ca\right)\ge4\)
\(\Leftrightarrow-2\left(ab+bc+ca\right)\le-4\)
Ta có :
\(a+b+c=3\Rightarrow\left(a+b+c\right)^2=9\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=9\)
\(\Rightarrow a^2+b^2+c^2=9-2\left(ab+bc+ca\right)\le9-4=5\Rightarrowđpcm\)Đẳng thức xảy ra khi
\(\left(2-a\right)\left(2-b\right)\left(2-c\right)=0\)
\(\left[{}\begin{matrix}2-a=0\\2-b=0\\2-c=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)
*\(a^3+b^3=2\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=2\)
Vì \(a^2-ab+b^2=\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\)
Nên a + b > 0
*Vì a + b > 0
\(\Rightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow a^3+b^3-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow3\left(a^3+b^3\right)\ge3ab\left(a+b\right)\)
\(\Leftrightarrow4\left(a^3+b^3\right)\ge a^3+b^3+3ab\left(a+b\right)\)
\(\Leftrightarrow4.2\ge\left(a+b\right)^3\)
\(\Leftrightarrow2\ge a+b\)
Vậy .....
\(a^3+b^3=2\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=2\Leftrightarrow\left(a+b\right)\left[\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]=2.\)
Suy ra : a+b > 0