Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a^3+b^3=2>0\Rightarrow a^3>-b^3\Rightarrow a>-b\Rightarrow a+b>0\)
\(a^3+b^3=2\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)=2\)
\(\Rightarrow2=\left(a+b\right)^3-3ab\left(a+b\right)\ge\left(a+b\right)^3-\frac{3}{4}\left(a+b\right)^3=\frac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\left(a+b\right)^3\le8\)
\(\Rightarrow a+b\le2\)
a³ + b³ + c³ - 3abc = (a+b+c)(a²+b²+c² -ab-bc-ca) ; thay giả thiết a+b+c = 3 ta có:
a³+b³+c³ = 3(a²+b²+c² -ab-bc-ca + abc) (1)
* từ giả thiết 0 ≤ a, b, c ≤ 2 => (2-a)(2-b)(2-c) ≥ 0
⇔ 8 -4a-4b-4c + 2ab+2bc+2ca -abc ≥ 0 (lại thay a+b+c = 3)
⇒ abc ≤ 2ab+2bc+2ca - 4 (2)
Dấu '=' khi có 1 số = 2
thay (1) vào (2) ta có:
a³+b³+c³ ≤ 3(a²+b²+c² +ab+bc+ca - 4) = 3[(a+b+c)² - ab-bc-ca -4] = 3(5-ab-bc-ca) (3)
Mặt khác cũng từ (2) ta có: 2(ab+bc+ca) ≥ abc+4 ≥ 4
⇒ -ab-bc-ca ≤ -2 (dấu "=" khi có 1 số = 0) thay vào (3) ta có
a³+b³+c³ ≤ 3(5-ab-bc-ca) ≤ 9 (đpcm)
Mới lớp 8 nên không hiểu biết rộng về lớp 9 sai bỏ qua
\(-1\le a\le2\Rightarrow\hept{\begin{cases}a+1\ge0\\a-2\le0\end{cases}\Rightarrow\left(a+1\right)\left(a-2\right)\le0}\)
Tương tự \(\left(b+1\right)\left(b-2\right)\le0,\left(c+1\right)\left(c-2\right)\le0\)
=> (a+1)(a-2)+(b+1)(b-2)+(c+1)(c-2)\(\le\)0 => a2+b2+c2-(a+b+c)-6\(\le\)0
=>a2+b2+c2 \(\le\)6
Dấu "=" xảy ra <=> (a+1)( a-2)=0, (b+1)(b-2)=0, (c+1)(c-2)=0 , a+b+c=0 <=> a=2, b=c=-1 và các hoán vị
Câu 1: Đặt \(S=\frac{x}{\sqrt{1-x^2}}+\frac{y}{\sqrt{1-y^2}}=\frac{x}{\sqrt{\left(1-x\right)\left(x+1\right)}}+\frac{y}{\sqrt{\left(1-y\right)\left(y+1\right)}}\)
\(\frac{S}{\sqrt{3}}=\frac{x}{\sqrt{\left(3-3x\right)\left(x+1\right)}}+\frac{y}{\sqrt{\left(3-3y\right)\left(y+1\right)}}\)
Áp dụng BĐT AM-GM: \(\sqrt{\left(3-3x\right)\left(x+1\right)}\le\frac{3-3x+x+1}{2}=\frac{4-2x}{2}=2-x\)
\(\Rightarrow\frac{x}{\sqrt{\left(3-3x\right)\left(x+1\right)}}\ge\frac{x}{2-x}\)
Tương tự: \(\frac{y}{\sqrt{\left(3-3y\right)\left(y+1\right)}}\ge\frac{y}{2-y}\)
Từ đó: \(\frac{S}{\sqrt{3}}\ge\frac{x}{2-x}+\frac{y}{2-y}=\frac{x^2}{2x-x^2}+\frac{y^2}{2y-y^2}\)
Áp dụng BĐT Schwarz: \(\frac{S}{\sqrt{3}}\ge\frac{x^2}{2x-x^2}+\frac{y^2}{2y-y^2}\ge\frac{\left(x+y\right)^2}{2\left(x+y\right)-\left(x^2+y^2\right)}=\frac{1}{2-\left(x^2+y^2\right)}\)
Áp dụng BĐT \(\frac{x^2+y^2}{2}\ge\frac{\left(x+y\right)^2}{4}\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)
\(\Rightarrow\frac{S}{\sqrt{3}}\ge\frac{1}{2-\frac{1}{2}}=\frac{2}{3}\Leftrightarrow S\ge\frac{2\sqrt{3}}{3}=\frac{2}{\sqrt{3}}\)(ĐPCM).
Dấu bằng có <=> \(x=y=\frac{1}{2}\).
Câu 4: Sửa đề CMR: \(abcd\le\frac{1}{81}\)
Ta có: \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}+\frac{1}{1+d}=3\)
\(\Leftrightarrow\frac{1}{1+a}=\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)+\left(1-\frac{1}{1+d}\right)\)
\(\Leftrightarrow\frac{1}{1+a}=\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\ge3\sqrt[3]{\frac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)(AM-GM)
Tương tự:
\(\frac{1}{1+b}\ge3\sqrt[3]{\frac{acd}{\left(1+a\right)\left(1+c\right)\left(1+d\right)}}\)\(;\frac{1}{1+c}\ge3\sqrt[3]{\frac{abd}{\left(1+a\right)\left(1+b\right)\left(1+d\right)}}\)
\(\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\)
Nhân 4 BĐT trên theo vế thì có:
\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge81\sqrt[3]{\frac{\left(abcd\right)^3}{\left[\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)\right]^3}}\)
\(=81.\frac{abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\)
\(\Rightarrow81.abcd\le1\Leftrightarrow abcd\le\frac{1}{81}\)(ĐPCM)
Dấu "=" có <=> \(a=b=c=d=\frac{1}{3}\).
Đặt \(\left(a;b;c\right)=\left(x-1;y-1;z-1\right)\Rightarrow\left\{{}\begin{matrix}0\le x;y;z\le3\\x+y+z=3\end{matrix}\right.\)
Ta có: \(ab+bc+ca=\left(x-1\right)\left(y-1\right)+\left(y-1\right)\left(z-1\right)+\left(z-1\right)\left(x-1\right)\)
\(=xy+yz+zx-2\left(x+y+z\right)+3=xy+yz+zx-3\)
Do \(x;y;z\ge0\Rightarrow xy+yz+zx\ge0\)
\(\Rightarrow xy+yz+zx-3\ge-3\) (đpcm)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị hay \(\left(a;b;c\right)=\left(-1;-1;2\right)\) và hoán vị
*\(a^3+b^3=2\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=2\)
Vì \(a^2-ab+b^2=\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\)
Nên a + b > 0
*Vì a + b > 0
\(\Rightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)
\(\Leftrightarrow a^3+b^3-ab\left(a+b\right)\ge0\)
\(\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)
\(\Leftrightarrow3\left(a^3+b^3\right)\ge3ab\left(a+b\right)\)
\(\Leftrightarrow4\left(a^3+b^3\right)\ge a^3+b^3+3ab\left(a+b\right)\)
\(\Leftrightarrow4.2\ge\left(a+b\right)^3\)
\(\Leftrightarrow2\ge a+b\)
Vậy .....
\(a^3+b^3=2\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=2\Leftrightarrow\left(a+b\right)\left[\left(a-\frac{b}{2}\right)^2+\frac{3b^2}{4}\right]=2.\)
Suy ra : a+b > 0