1,Tìm hệ số a của \(Q\left(x\right)=x^2ax-2\)biết Q(x) có nghiệm là -2
2, Cho đa thức \(P\left(x\right)=2x+a-1.\)Tìm a để P(x) có nghiệm là 0.
Ai nhanh mik tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=x^2+ax+b\)
Note: Đằng trc f(x) thì đằng sau cũng f(x)
\(f\left(0\right)=0^2+a.0+b=b=4\)
Thay b = 4 vào f(x)
\(f\left(x\right)=x^2+ax+4\)
x = 2 là nghiệm \(\Rightarrow f\left(2\right)=2^2+a.2+4=4+2a+4=0\)
\(4+2a+4=0\)
\(\Rightarrow2a=-8\)
\(\Rightarrow a=-4\)
Vậy a = -4
b = 4
\(f\left(x\right)=\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-1\\x-3\end{cases}}\)
=> x = 1 và x = 3 là nghiệm của đa thức f(x)
Mà nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x)
=> nghiệm của đa thức g(x) là x = { 1; 3 }
Với x = 1 thì \(g\left(x\right)=1^3-a.1^2+b.1-3=0\)
\(\Rightarrow-a+b=2\)(1)
Với x = 3 thì \(g\left(x\right)=3^3-a.3^2+3b-3=0\)
\(\Rightarrow3a-b=8\)(2)
Cộng vế với vế của (1) và (2) ta được : ( - a + b ) + (3a - b) = 10
=> 2a = 10 => a = 5
=> - 5 + b = 2 => b = 7
Vậy a = 5 ; b = 7
(x-1)(x-3)=0
=>x-1=0 hoặc x-3=0
=>x=1 hoặc x=3
Vậy nghiệm của f(x) là 1 và 3
Nghiệm của g(x) cũng là 1 và 3
Với x=1 ta có g(x)=1+a+b-3=0
=>a+b-2=0
a+b=2
Với x=3 ta có g(x)=27-9a+3b-3=0
=>24-9a+3b=0
=>8-3a+b=0
=>3a-b=8
a=\(\frac{8+b}{3}\)
Vậy với a+b=2 hoặc \(a=\frac{8+a}{3}\) thì nghiệm của đa thức f(x) cũng là nghiệm của g(x)
\(x=-2\) là một nghiệm của \(P\left(x\right)\)nên
\(P\left(-2\right)=0\)
\(\Leftrightarrow\left(a+1\right)^2.\left(-2\right)^3+\left(2a-3\right).2^2-5=0\)
\(\Leftrightarrow-8\left(a^2+2a+1\right)+4\left(2a-3\right)-5=0\)
\(\Leftrightarrow-8a^2-8a-25=0\)
\(\Leftrightarrow-8\left(a^2+a+\frac{1}{4}\right)-23=-8\left(a+\frac{1}{2}\right)^2-23=0\)
Phương trình này vô nghiệm do \(VT< 0\).
Vậy không tồn tại giá trị nào của \(a\)thỏa mãn ycbt.
1) \(6x+18=0\)
\(6x=0-18\)
\(6x=-18\)
\(x=\left(-18\right):6\)\(=-3\)
Vậy nghiệm của \(M\left(x\right)\) là \(x=-3\)
2) Thay \(x=2\) vào biểu thức \(N\left(x\right)\)
\(a.2+4=0\)
\(a.2=0-4=-4\)
\(a=\left(-4\right):2=-2\)
Bài 1:
a) \(x^2+7x-8=x^2+2.x.\frac{7}{2}+\frac{49}{4}-\frac{81}{4}\)
\(=\left(x+\frac{7}{2}\right)^2-\frac{81}{4}=0\)
\(\Rightarrow\left(x+\frac{7}{2}\right)^2=\frac{81}{4}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{7}{2}=\frac{9}{2}\\x+\frac{7}{2}=\frac{-9}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-8\end{cases}}\)
Vậy nghiệm của đa thức m(x) là 1 hoặc -8
b) \(\left(x-3\right)\left(16-4x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\16-4x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=4\end{cases}}\)
Vậy nghiệm của đa thức g(x) là 3 hoặc 4
c) \(5x^2+9x+4=0\)
\(\Rightarrow x^2+\frac{9}{5}x+\frac{4}{5}=0\)
\(\Rightarrow x^2+2x.\frac{9}{10}+\frac{81}{100}-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2-\frac{1}{100}=0\)
\(\Rightarrow\left(x+\frac{9}{10}\right)^2=\frac{1}{100}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{9}{10}=\frac{1}{10}\\x+\frac{9}{10}=\frac{-1}{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-4}{5}\\x=-1\end{cases}}\)
Vậy...
Vì đa thức g(x) là đa thức bậc 3 và mọi nghiệm của f(x) cũng là của g(x) nên:
G/s \(g\left(x\right)=\left(x-1\right)\left(x+3\right)\left(x-c\right)\) \(\left(c\inℝ\right)\)
Khi đó: \(x^3-ax^2+bx-3=\left(x-1\right)\left(x+3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=\left(x^2+2x-3\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-3=x^3-\left(c-2\right)x^2-\left(2c+3\right)x+3c\)
Đồng nhất hệ số ta được:
\(\hept{\begin{cases}a=c-2\\b=-2c-3\\c=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-1\\c=-1\end{cases}}\)
Vậy a = -3 , b = -1
Câu 1 xem lại đề :v
2, \(P\left(x\right)=2x+a-1.\)
\(2.0+a-1=0\)
\(a-1=0\Leftrightarrow a=1\)