K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

A = x2 - 2xy + y2 + 4x2 + 6x + 9 + 4y2 - 6x + 9 -18

A = (x-y)2+(2x+1)2+(2y-1)2 - 18 ≥ -18

vật min của A là -18 khi x = -\(\frac{1}{2}\); y = \(\frac{1}{2}\)

1 tháng 5 2019

eyyy man

DD
5 tháng 12 2021

\(9x^2+5y^2-6xy-6x-6y+20\)

\(=9x^2+y^2+1-6x+2y-6xy+4y^2-8y+4+15\)

\(=\left(3x-y-1\right)^2+4\left(y-1\right)^2+15\ge15\)

Dấu \(=\)khi \(\hept{\begin{cases}3x-y-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{2}{3}\\y=1\end{cases}}\).

AH
Akai Haruma
Giáo viên
14 tháng 12 2023

Lời giải:

$M=(x^2+y^2+2xy)+x^2+y^2-6x-6y+11$

$=(x+y)^2+x^2+y^2-6x-6y+11$

$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+5$

$=(x+y-2)^2+(x-1)^2+(y-1)^2+5\geq 0+0+0+5=5$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+y-2=x-1=y-1=0$

$\Leftrightarrow x=y=1$

29 tháng 3 2021

có làm mới có ăn nha em

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

25 tháng 10 2020

1. \(A=2x^2-6x-2xy+y^2+10\)

\(\Leftrightarrow A=\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)+1\)

\(\Leftrightarrow A=\left(x-y\right)^2+\left(x-3\right)^2+1\)

\(\left(x-y\right)^2\ge0\) ; \(\left(x-3\right)^2\ge0\)\(\forall x;y\)

\(\Rightarrow A=\left(x-y\right)^2+\left(x-3\right)^2+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=3\)

Vậy minA = 1 \(\Leftrightarrow x=y=3\)

2. \(A=5+2xy+14y-x^2-5y^2-2x\)

\(\Leftrightarrow A=-\left(x^2-2xy+y^2+2x-2y+1\right)-\left(4y^2-12y+9\right)+15\)

\(\Leftrightarrow A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\)

\(\left\{{}\begin{matrix}\left(x-y+1\right)^2\ge0\\\left(2y-3\right)^2\ge0\end{matrix}\right.\)\(\forall x;y\)

\(\Rightarrow A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\le15\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(2y-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\y=\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{3}{2}\end{matrix}\right.\)

Vậy maxA = 15 \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{3}{2}\end{matrix}\right.\)

26 tháng 11 2020

1. A=2x2−6x−2xy+y2+10A=2x2−6x−2xy+y2+10

⇔A=(x2−2xy+y2)+(x2−6x+9)+1⇔A=(x2−2xy+y2)+(x2−6x+9)+1

⇔A=(x−y)2+(x−3)2+1⇔A=(x−y)2+(x−3)2+1

(x−y)2≥0(x−y)2≥0 ; (x−3)2≥0(x−3)2≥0∀x;y∀x;y

⇒A=(x−y)2+(x−3)2+1≥1⇒A=(x−y)2+(x−3)2+1≥1

Dấu "=" xảy ra ⇔{(x−y)2=0(x−3)2=0⇔x=y=3⇔{(x−y)2=0(x−3)2=0⇔x=y=3

Vậy minA = 1 ⇔x=y=3⇔x=y=3

2. A=5+2xy+14y−x2−5y2−2xA=5+2xy+14y−x2−5y2−2x

⇔A=−(x2−2xy+y2+2x−2y+1)−(4y2−12y+9)+15⇔A=−(x2−2xy+y2+2x−2y+1)−(4y2−12y+9)+15

⇔A=−(x−y+1)2−(2y−3)2+15⇔A=−(x−y+1)2−(2y−3)2+15

{(x−y+1)2≥0(2y−3)2≥0{(x−y+1)2≥0(2y−3)2≥0∀x;y∀x;y

⇒A=−(x−y+1)2−(2y−3)2+15≤15⇒A=−(x−y+1)2−(2y−3)2+15≤15

Dấu "=" xảy ra ⇔{(x−y+1)2=0(2y−3)2=0⇔{x−y=−1y=32⇔{x=12y=32⇔{(x−y+1)2=0(2y−3)2=0⇔{x−y=−1y=32⇔{x=12y=32

Vậy maxA = 15 ⇔{x=12y=32