K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(D=\dfrac{5}{1\cdot2}+...+\dfrac{5}{199\cdot200}\)

\(=\dfrac{5}{2}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{199}-\dfrac{1}{200}\right)\)

\(=\dfrac{5}{2}\cdot\dfrac{199}{200}=\dfrac{199}{80}\)

AH
Akai Haruma
Giáo viên
6 tháng 10 2021

Lời giải:

\(D=5\times \left(\frac{1}{1\times 2}+\frac{1}{2\times 3}+\frac{1}{3\times 4}+...+\frac{1}{199\times 200}\right)\)

\(=5\times \left(\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+...+\frac{200-199}{199\times 200}\right)\)

\(=5\times \left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{199}-\frac{1}{200}\right)=5\times (1-\frac{1}{200})\)

\(=5\times \frac{199}{200}=\frac{995}{200}=\frac{199}{40}\)

6 tháng 10 2021

\(B=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{199\times200}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{199}-\dfrac{1}{200}\)

\(=1-\dfrac{1}{200}=\dfrac{199}{200}\)

6 tháng 10 2021

E=0,5 x 199/200=199/400

\(E=\dfrac{0.5}{1.2}+\dfrac{0.5}{2\cdot3}+...+\dfrac{0.5}{199\cdot200}\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{200}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{199}{200}=\dfrac{199}{400}\)

6 tháng 10 2021

\(H=0,25\times\left(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{19\times20}\right)\)

\(=0,25\times\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{19}-\dfrac{1}{20}\right)\)

\(=0,25\times\left(1-\dfrac{1}{20}\right)=0,25\times\dfrac{19}{20}=\dfrac{19}{80}\)

\(H=\dfrac{0.25}{1\cdot2}+\dfrac{0.25}{2\cdot3}+...+\dfrac{0.25}{199\cdot200}\)

\(=\dfrac{1}{4}\cdot\dfrac{199}{200}=\dfrac{199}{800}\)

22 tháng 6 2017

a, \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{5}{12}+\dfrac{19}{30}\)

\(=\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{5}{12}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{19}{30}\right)\)

\(=1+1=2\)

Chúc bạn học tốt!!!

22 tháng 6 2017

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{1998.1999}+\dfrac{1}{1999.2000}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{1998}-\dfrac{1}{1999}+\dfrac{1}{1999}-\dfrac{1}{2000}\)

\(=1-\dfrac{1}{2000}=\dfrac{1999}{2000}.\)

6 tháng 10 2021

\(C=\dfrac{2}{1\times2}+\dfrac{2}{2\times3}+...+\dfrac{2}{2019\times2020}\)

\(=2\left(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{2019\times2020}\right)\)

\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2019}-\dfrac{1}{2020}\right)\)

\(=2\left(1-\dfrac{1}{2020}\right)=2.\dfrac{2019}{2020}=\dfrac{2019}{1010}\)

6 tháng 10 2021

lớp 5 đây á

no no

đây ko phải lớp 5 mọi người nhỉ ?

8 tháng 4 2023

Đây là dạng tính nhanh tổng các phân số, trong đó mỗi phân số của tổng có tử số bằng hiệu hai thừa số dưới mẫu và mẫu thứ hai của thừa số này là mẫu số thứ nhất của phân số liền kề với nó. Em tách từng phân số thành hiệu hai phân số mà tử số là 1 còn mẫu số là mẫu hai mẫu số của phân số ban đầu. Triệt tiêu các hạng tử giống nhau ta được tổng cần tìm  

       Dưới đây là cách giải chi tiết em tham khảo nhé em.

A = \(\dfrac{1}{1\times2}\) + \(\dfrac{1}{2\times3}\) + \(\dfrac{1}{3\times4}\)+ .....+ \(\dfrac{1}{99\times100}\)

A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) +.....+ \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)

A =  \(\dfrac{1}{1}\) - \(\dfrac{1}{100}\)

A = \(\dfrac{99}{100}\)

 

TH
Thầy Hùng Olm
Manager VIP
8 tháng 4 2023

HD: \(\dfrac{1}{nx\left(n+1\right)}=\dfrac{1}{n}-\dfrac{1}{n+1}\)

A= \(1-\dfrac{1}{100}=\dfrac{99}{100}\)

20 tháng 9 2023

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}\)

20 tháng 9 2023

\(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+...+\dfrac{1}{9\times10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
#kễnh

7 tháng 3 2022

\(\Leftrightarrow2\left(x-\dfrac{1}{3}\right)\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)=\dfrac{3}{4}\)

\(\Leftrightarrow2\left(x-\dfrac{1}{3}\right)\left(1-\dfrac{1}{10}\right)=\dfrac{3}{4}\Leftrightarrow\dfrac{9}{10}\left(x-\dfrac{1}{3}\right)=\dfrac{3}{8}\)

\(\Leftrightarrow x-\dfrac{1}{3}=\dfrac{5}{12}\Leftrightarrow x=\dfrac{5}{12}+\dfrac{1}{3}=\dfrac{9}{12}=\dfrac{3}{4}\)