Tìm giá trị lớn nhất của biểu thức :
A= 2(m +p) + mp - m2 - p2
#mã mã#
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2\left(m+p\right)+mp-m^2-p^2\)
\(=\frac{4m+4m+2mp-2m^2-2p^2}{2}\)
\(=\frac{-\left(m-2\right)^2-\left(p-2\right)^2-\left(m-p\right)^2+8}{2}\le4\)
Đẳng thức xảy ra khi m=p=2
a, Với m= 2, ta có 2 x 2 − 4 x + 2 = 0 ⇔ x = 1
b) Phương trình (1) có hai nghiệm x 1 , x 2 khi và chỉ khi Δ ' ≥ 0 ⇔ − 2 ≤ m ≤ 2
Theo Vi-et , ta có: x 1 + x 2 = m 1 x 1 . x 2 = m 2 − 2 2 2
Theo đề bài ta có: A = 2 x 1 x 2 − x 1 − x 2 − 4 = m 2 − 2 − m − 4 = m − 3 m + 2
Do − 2 ≤ m ≤ 2 nên m + 2 ≥ 0 , m − 3 ≤ 0 . Suy ra A = m + 2 − m + 3 = − m 2 + m + 6 = − m − 1 2 2 + 25 4 ≤ 25 4
Vậy MaxA = 25 4 khi m = 1 2 .
\(2A=4\left(m+p\right)+2mp-2m^2-2p^2=\left(-m^2+4m-4\right)+\left(-p^2+4p-4\right)+\left(-m^2+2mp-p^2\right)+8\)
\(=-\left(m-2\right)^2-\left(p-2\right)^2-\left(m-p\right)^2+8\le8\)
=> \(A\le4\)
"=" <=> m=p=2