\(A=2\left(m+p\right)+mp-m^2-p^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2021

\(A=2\left(m+p\right)+mp-m^2-p^2\)

\(=\frac{4m+4m+2mp-2m^2-2p^2}{2}\)

\(=\frac{-\left(m-2\right)^2-\left(p-2\right)^2-\left(m-p\right)^2+8}{2}\le4\)

Đẳng thức xảy ra khi m=p=2

8 tháng 1 2017

1/ Tìm Max. Ta có

\(\frac{M}{2}=\frac{15x}{2}+\frac{x\sqrt{17-x^2}}{2}\)

\(=-\left(\frac{x^2}{16}-\frac{2x\sqrt{17-x^2}}{4}+17-x^2\right)-15\left(\frac{x^2}{16}-\frac{2x}{4}+1\right)+32\)

\(=-\left(\frac{x}{4}-\sqrt{17-x^2}\right)^2-15\left(\frac{x}{4}-1\right)^2+32\le32\)

\(\Rightarrow M\le64\)

\(\Rightarrow\)GTLN là M = 64 đạt được khi x = 4

Tìm Min. Ta có

\(\frac{M}{2}=\frac{15x}{2}+\frac{x\sqrt{17-x^2}}{2}\)

\(=\left(\frac{x^2}{16}+\frac{2x\sqrt{17-x^2}}{4}+17-x^2\right)+15\left(\frac{x}{16}+\frac{2x}{4}+1\right)-32\)

\(=\left(\frac{x}{4}+\sqrt{17-x^2}\right)^2+15\left(\frac{x}{4}+1\right)^2-32\ge-32\)

\(\Rightarrow M\ge-64\)

Vậy GTNN là M = - 64 đạt được khi x = - 4

8 tháng 1 2017

x = 8 đó mình chỉ đoán thôi 

20 tháng 12 2015

 

a) \(\left(1+\sqrt{2}\right)^2+\left(m+1\right)\left(1+\sqrt{2}\right)-6=0\Leftrightarrow4\sqrt{2}-2=-m\left(1+\sqrt{2}\right)\)

\(m=\frac{2-4\sqrt{2}}{\sqrt{2}+1}=....\)

b) A=\(x^4-13x^2+36\) không làm được nữa..... 

25 tháng 7 2016

Bài 1 : \(A=\frac{2016}{x^2-2x+2017}\) đạt GTLN khi \(x^2-2x+2017\) đạt GTNN .

\(x^2-2x+2017=x^2-2x+1+2016=\left(x-1\right)^2+2016\Rightarrow GTNN\) của \(x^2-2x+2017\) là \(2016\)

\(\Rightarrow GTLN\) của \(A\) là : \(\frac{2016}{2016}=1\)

25 tháng 7 2016

Bài 2 :

a ) Đặt \(A=\frac{2}{6x-9x^2-21}.A\) đạt \(GTNN\) Khi \(\frac{1}{A}\) đạt \(GTLN\).

Ta có : \(\frac{1}{A}=\frac{-9x^2+6x-21}{20}=-\frac{9}{20}\left(x-\frac{1}{3}\right)^2-1\le-1\)

Vậy \(Max\left(\frac{1}{A}\right)=-1\Leftrightarrow x=\frac{1}{3}\)

\(\Rightarrow Min_A=-1\Rightarrow x=\frac{1}{3}\)

b ) Đặt \(B=\left(x-1\right)\left(x-2\right)\left(x-5\right)\left(x-6\right)\)

Ta có : \(B=\left[\left(x-1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-5\right)\right]=\left(x^2-7x+6\right)\left(x^2-7x+10\right)\)

Đặt \(y=x^2-7x+8\Rightarrow B=\left(y+2\right)\left(y-2\right)=y^2-4\ge-4\)

\(Min_B=-4\) khi và chỉ khi \(x^2-7x+8=0\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{7+\sqrt{17}}{2}\\x=\frac{7-\sqrt{17}}{2}\end{array}\right.\)

 

24 tháng 7 2017

a) A = \(\sqrt{-x^2+x+\dfrac{3}{4}}=\sqrt{1-\left(x-\dfrac{1}{2}\right)^2}\le\sqrt{1}=1\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))

Vậy max A = 1 (khi và chỉ khi x = \(\dfrac{1}{2}\))

b) B = \(\sqrt{\left(2x^2-x-1\right)^2+9}\ge\sqrt{9}=3\) (dấu "=" xảy ra \(\Leftrightarrow2x^2-x-1=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow x=1;x=-\dfrac{1}{2}\)).

Vậy min B = 3 (khi và chỉ khi x = 1 hoặc x = \(-\dfrac{1}{2}\))

c) C = \(\left|5x-2\right|+\left|5x\right|=\left|2-5x\right|+\left|5x\right|\);

C \(\ge\left|2-5x+5x\right|=\left|2\right|=2\) (dấu "=" xảy ra \(\Leftrightarrow\left(2-5x\right).5x\ge0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\2-5x\ge0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x\le0\\2-5x\le0\end{matrix}\right.\)

\(\Leftrightarrow0\le x\le\dfrac{2}{5}\)).

Vậy min C = 2 (khi và chỉ khi \(0\le x\le\dfrac{2}{5}\))

19 tháng 9 2018

https://vndoc.com/de-thi-hoc-sinh-gioi-mon-toan-lop-9-nam-hoc-2015-2016-truong-thcs-thanh-van-ha-noi/download