1+1/2+1/3+1/4+...+1/1^100-1
Chứng minh biểu thức trên <100,>50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2^2+1/3^2+...+1/50^2
< 1/1.2 + 1/2.3 +...+ 1/49.50
=1-1/2+/12-1/3+1/3-...-1/49+1/49-1/50
=1-1/50<1(đpcm)
Lời giải:
$A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1000^2}$
$< \frac{1}{4}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}$
$=\frac{1}{4}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{1000-999}{999.1000}$
$=\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}$
$=\frac{1}{4}+\frac{1}{2}-\frac{1}{1000}$
$< \frac{1}{4}+\frac{1}{2}=\frac{3}{4}$
Ta có đpcm.
\(\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}.\frac{5^2-1}{5^2}.....\frac{50^2-1}{50^2}\)
Tính biểu thức trên
\(=\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\left(1-\frac{1}{5^2}\right)...\left(1-\frac{1}{50^2}\right)\)
\(=\frac{8}{3\cdot3}\cdot\frac{15}{4\cdot4}\cdot\frac{24}{5\cdot5}\cdot....\cdot\frac{2499}{50\cdot50}\)
\(=\frac{\left(2\cdot4\right)\left(3\cdot5\right)\left(4\cdot6\right)...\left(49\cdot51\right)}{\left(3\cdot3\right)\left(4\cdot4\right)\left(5\cdot5\right)...\left(50\cdot50\right)}\)
\(=\frac{\left(2\cdot3\cdot4\cdot...\cdot49\right)\left(4\cdot5\cdot6\cdot...\cdot51\right)}{\left(3\cdot4\cdot5\cdot...\cdot50\right)\left(3\cdot4\cdot5\cdot...\cdot50\right)}\)
\(=\frac{2\cdot51}{50\cdot3}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(A=\frac{1}{2}.\frac{4949}{9900}\)
\(A=\frac{4949}{19800}\)
Ta có:
A=1+(1/2+1/3)+(1/4+1/5+1/6+1/7)+(1/8+1/9+......+1/15)+........+ (1/2^99+1/2^99+1+........+1/2^100-1)
(Có 99 nhóm) < 1+2.1/2+2^2.1/2^2+2^3.1/2^3+.....+2^99.1/2^99
=>1+1+1+.......+1 (100 số 1)=100
=>A1+1/2+2.1/2^2+2^2.1/2^3+2^3.1/2^4+.....+2^991/2^100-1-1/2^100 =1+1/2+1/2+1/2+1/2+........+1/2-1/2^100 (100 số 1/2)
=1+100.12-1/2^100
=50+1-1/2^100>50
=>A>50 (2)
Từ (1)và (2)=>50