1. Cho hình chữ nhật ABCD. Vẽ AH vuông góc BD (H thuộc BD), HK // CD (K thuộc BC).
a) Chứng minh tam giác ADH đồng dạng với tam giác DBC.
b/ Chứng minh CD.BK = AH.BH.
c/ Cho biết AB=5cm, HB-4cm. Tính BK?
2. Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác cân ở A, AB=5cm. BC=6cm và AA' = 7cm. Gọi M, M' lần lượt là trung điểm của BC và BC.
a/ Chứng minh MM' song song với mặt phẳng ABB'A'
b/ Tính thể tích của hình lăng trụ đứng trên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ban tim canh MH va canh NH. Sau do chung minh tam giacAMH dong dang tam giacNHB roi suy ra canh ti le va goc de chung minh 2 tam giac do dong dang
a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có
góc ABD chung
=>ΔABD đồng dạng với ΔHBA
b: BD=căn 3^2+4^2=5cm
HB=AB^2/BD=3,2cm
c: AD là phân giác
=>ED/EB=AD/AB
mà AD/AB=AH/BH
nên ED/EB=AH/BH
a, Xét 2 tam giác vuông đó có: (ADB)=(CBD) (cùng phụ với góc BDC)
b, AH.BD=AD.AB vì bằng 2 lần diện tích tam giác ADB.
c, Áp dụng hệ thức lượng trong tam giác vuông tính được AH.
Biết AH, BD tính được S tam giác.
a) Áp dụng định lí Pytago vào ΔABD vuông tại A, ta được:
\(BD^2=AB^2+AD^2\)
\(\Leftrightarrow BD^2=6^2+8^2=100\)
hay BD=10(cm)
b) Xét ΔDHA vuông tại H và ΔDAB vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔDHA\(\sim\)ΔDAB(g-g)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)
\(BH=\sqrt{12^2-9.6^2}=7.2\left(cm\right)\)
a: \(DB=\sqrt{20^2+15^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AD}{BD}=12\left(cm\right)\)
b: Xét ΔADB vuông tại A và ΔHDA vuông tại H có
góc ADB chung
Do đó: ΔADB\(\sim\)ΔHDA
a: BD=căn 8^2+6^2=10cm
AH=6*8/10=4,8cm
b: Xét ΔADH vuông tại H và ΔCBA vuông tại A có
góc ADH=góc BCA
=>ΔADH đồng dạng với ΔCBA
c: Xét ΔADM và ΔACN có
AD/AC=DM/CN
góc ADM=góc ACN
=>ΔADM đồng dạng với ΔACN