(2x^2)-9 giải gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x^2+2x+3>2`
`<=>x^2+2x+1>0`
`<=>(x+1)^2>0`
`<=>x+1 ne 0`
`<=>x ne -1`
`(x+5)(3x^2+2)>0`
Vì `3x^2+2>=2>0`
`=>x+5>0<=>x>-5`
c) Ta có: \(21x-10x^2+9< 0\)
\(\Leftrightarrow10x^2-21x-9>0\)
\(\Leftrightarrow x^2-\dfrac{21}{10}x-\dfrac{9}{10}>0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{21}{20}+\dfrac{441}{400}>\dfrac{801}{400}\)
\(\Leftrightarrow\left(x-\dfrac{21}{20}\right)^2>\dfrac{801}{400}\)
\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{3\sqrt{89}+21}{20}\\x< \dfrac{-3\sqrt{89}+21}{20}\end{matrix}\right.\)
\(a.2x+7x+x=-270\)
\(10x=-270\)
\(x=-27\)
\(b,\left(x-1\right)\left(x-9\right)=0\)
\(=>x-1=0\) \(=>x=1\)
\(x-9=0=>x=9\)
Vậy \(x\in\left\{1;9\right\}\)
cho mình hỏi ạ...bài a, sao bạn là ra là 10x ạ?
Bạn không thích trả lời cũng được ạ...!
1:=x^3-27-x^2-3=x^3-x^2-30
2: =x-2+125x^3+150x^2+60x+8
=125x^3+150x^2+61x+6
3: \(=2xy-5y+5y=2xy\)
4: =25x-10x^2+15x
=-10x^2+40x
a)\(\left(5x+2\right)\left(2x-6\right)=0\\ \left\{{}\begin{matrix}5x+2=0\Leftrightarrow5x=-2\Leftrightarrow x=\dfrac{-2}{5}\\2x-6=0\Leftrightarrow2x=6\Leftrightarrow x=\dfrac{6}{2}=3\end{matrix}\right.\)
b)\(\dfrac{5x}{2x+2}+1=\dfrac{8}{x+1}\\ \Leftrightarrow\dfrac{5x}{2\left(x+1\right)}+1=\dfrac{8}{x+1}\\ \Leftrightarrow\dfrac{5x+2\left(x+1\right)}{2\left(x+1\right)}=\dfrac{2\cdot8}{2\left(x+1\right)}\\ \Leftrightarrow5x+2\left(x+1\right)=16\\ \Leftrightarrow5x+2x+2=16\\ \Leftrightarrow5x+2x=16-2\\ \Leftrightarrow7x=14\\ \Leftrightarrow x=\dfrac{14}{7}=2\)
a, <=>5x+2=0<=>x=-2/5
<=>2x-6=0<=>x=6/2=3
mik có tí việc ko lm hết cho bn đc xl
\(a,ĐK:...\\ PT\Leftrightarrow x^2-6x=x^2-7x+10\\ \Leftrightarrow x=10\left(tm\right)\\ b,ĐK:...\\ PT\Leftrightarrow2x\left(4-x\right)-\left(2-2x\right)\left(8-x\right)=\left(8-x\right)\left(4-x\right)\\ \Leftrightarrow8x-2x^2+16+18x-2x^2=32-12x+x^2\\ \Leftrightarrow3x^2-38x+16=0\left(casio\right)\\ c,ĐK:...\\ PT\Leftrightarrow2x\left(x-4\right)-4x=0\\ \Leftrightarrow2x^2-12x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=6\left(tm\right)\end{matrix}\right.\)
`(2x-3)(4x^2+6x+9)`
`=(2x-3)[(2x)^2+2x.3+3^2]`
`=(2x)^3-3^3=8x^3-27`
\(\left(2x-3\right)\left(4x^2+6x+9\right)=8x^3-27\)
Đặt x2 = t > 0 ta được
\(2t+1=\dfrac{1}{t}-4\Leftrightarrow2t^2+5t-1=0\\ \Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-5+\sqrt{33}}{4}\\t=\dfrac{-5-\sqrt{33}}{4}\left(loại\right)\end{matrix}\right.\\ \Leftrightarrow x^2=\dfrac{-5+\sqrt{33}}{4}\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\sqrt{-5+\sqrt{33}}}{2}\\x=\dfrac{\sqrt{-5+\sqrt{33}}}{2}\end{matrix}\right.\)
Vậy pt có 2 nghiệm
\(2x^2+1=\dfrac{1}{x^2}-4\left(1\right)\)
Đặt \(x^2=t\left(t\ge0\right)\)
Khi đó phương trình \(\left(1\right)\) trở thành \(2t+1=\dfrac{1}{t}-4\)
\(\Leftrightarrow2t^2+5t-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{-5+\sqrt{33}}{4}\left(\text{nhận}\right)\\t=\dfrac{-5-\sqrt{33}}{4}\left(\text{loại}\right)\end{matrix}\right.\)
\(\Rightarrow x^2=\dfrac{-5+\sqrt{33}}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\sqrt{-5+\sqrt{33}}}{2}\\x=\dfrac{\sqrt{-5+\sqrt{33}}}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{-\sqrt{-5+\sqrt{33}}}{2};\dfrac{\sqrt{-5+\sqrt{33}}}{2}\right\}\)
Ko cần đâu bn à mk mong bn đấy
a)\(\left(3x-1\right)\left(5-\frac{1}{2}x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-1=0\\5-\frac{1}{2}x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=10\end{cases}}\)
b)\(2\left|\frac{1}{2}x-\frac{1}{3}\right|-\frac{3}{2}=\frac{1}{4}\)
\(2\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{4}\)
\(\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{8}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{2}x-\frac{1}{3}=\frac{7}{8}\\\frac{1}{2}x-\frac{1}{3}=-\frac{7}{8}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{29}{12}\\x=-\frac{13}{12}\end{cases}}\)
a)\(\left(3x-1\right)\left(\frac{-1}{2}x+5\right)=0\)
\(\Leftrightarrow\)3x - 1 = 0 hay \(\frac{-1}{2}\)x + 5 = 0
\(\Leftrightarrow\)3x = 1 I\(\Leftrightarrow\)\(\frac{-1}{2}\)x = -5
\(\Leftrightarrow\) x = \(\frac{1}{3}\) I\(\Leftrightarrow\) x = 10
b) 2 I \(\frac{1}{2}x-\frac{1}{3}\)I - \(\frac{3}{2}\)=\(\frac{1}{4}\)
\(\Leftrightarrow\) 2 I\(\frac{1}{2}x-\frac{1}{3}\)I = \(\frac{7}{4}\)
\(\Leftrightarrow\) I\(\frac{1}{2}x-\frac{1}{3}\)I = \(\frac{7}{8}\)
\(\Leftrightarrow\)\(\frac{1}{2}x-\frac{1}{3}\)= \(\frac{7}{8}\) hay \(\frac{1}{2}x-\frac{1}{3}\)= \(\frac{-7}{8}\)
\(\Leftrightarrow\)\(\frac{1}{2}x\) = \(\frac{29}{24}\) I\(\Leftrightarrow\)\(\frac{1}{2}x\) = \(\frac{-13}{24}\)
\(\Leftrightarrow\) x = \(\frac{29}{12}\) I\(\Leftrightarrow\) x = \(\frac{-13}{12}\)
c) (2x +\(\frac{3}{5}\))2 - \(\frac{9}{25}\)= 0
\(\Leftrightarrow\)(2x +\(\frac{3}{5}\))2 = \(\frac{9}{25}\)
\(\Leftrightarrow\) 2x +\(\frac{3}{5}\) = \(\frac{3}{5}\) hay 2x +\(\frac{3}{5}\)= \(\frac{-3}{5}\)
\(\Leftrightarrow\) 2x = 0 I \(\Leftrightarrow\)2x = \(\frac{-6}{5}\)
\(\Leftrightarrow\) x = 0 I \(\Leftrightarrow\) x = \(\frac{-3}{5}\)
d) 3(x -\(\frac{1}{2}\)) - 5(x +\(\frac{3}{5}\)) = -x + \(\frac{1}{5}\)
\(\Leftrightarrow\)3x - \(\frac{3}{2}\)- 5x - 3 = -x + \(\frac{1}{5}\)
\(\Leftrightarrow\)-2x + x - \(\frac{9}{2}\)- \(\frac{1}{5}\)= 0
\(\Leftrightarrow\)-x = \(\frac{-47}{10}\)
\(\Leftrightarrow\) x = \(\frac{47}{10}\)
(2x^2)-9
=(2x^2)-3^2
=(2x-3)^2
\(2x^2-9=0\)
=> \(2x^2=9\)
=> \(x^2=\frac{9}{2}\)
=> \(\orbr{\begin{cases}x=\frac{3}{\sqrt{2}}\\x=-\frac{3}{\sqrt{2}}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3\sqrt{2}}{2}\\x=-\frac{3\sqrt{2}}{2}\end{cases}}}\)