tìm gtnn của M = \(\frac{x+6\sqrt{x}+34}{\sqrt{x}+3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{x+6\sqrt{x}+9+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)Áp dụng Cô si có
\(M\ge2\sqrt{\left(\sqrt{x}+3\right).\dfrac{25}{\sqrt{x}+3}}=10\)
Dấu "=" \(\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\leftrightarrow x=4\)
Vậy GTNN của M = 10 <=> x = 4
\(M=\dfrac{\left(x+6\sqrt{x}+9\right)+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)
Do \(\sqrt{x}\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}+3>0\\\dfrac{25}{\sqrt{x}+3}>0\end{matrix}\right.\)
Áp dụng bđt cô-si ta có:
\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\ge2\sqrt{\left(\sqrt{x}+3\right)\cdot\dfrac{25}{\sqrt{x}+3}}=2\sqrt{25}=10\)
hay \(M\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\Leftrightarrow x=4\)
Vậy GTNN của M = 10 khi x = 4
\(B=\dfrac{x+6\sqrt{x}+34}{\sqrt{x}+3}=\dfrac{x+6\sqrt{x}+9+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+3\right)^2}{\sqrt{x}+3}+\dfrac{25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\) Áp dụng BĐT Cauchy cho các số dương , ta có :
\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\) ≥ \(2\sqrt{\left(\sqrt{x}+3\right).\dfrac{25}{\sqrt{x}+3}}=2.5=10\)
⇒ \(B_{MIN}=10."="\) ⇔ \(x=4\)
\(M=\dfrac{x+6\sqrt{x}+9+25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}>=2\cdot\sqrt{25}=10\)
Dấu = xảy ra khi x=4
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
b/ Ko biết yêu cầu
4/ \(E=\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{x^6}{27x^6}}=\frac{5}{\sqrt[5]{27}}\)
Dấu "=" xảy ra khi \(\frac{x^2}{3}=\frac{1}{x^3}\Leftrightarrow x=\sqrt[5]{3}\)
\(F=x+\frac{1}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{1}{x^2}\ge3\sqrt[3]{\frac{x^2}{4x^2}}=\frac{3}{\sqrt[3]{4}}\)
Dấu "=" xảy ra khi \(\frac{x}{2}=\frac{1}{x^2}\Rightarrow x=\sqrt[3]{2}\)
6/ \(Q=\frac{\left(x+1\right)^2+16}{2\left(x+1\right)}=\frac{x+1}{2}+\frac{8}{x+1}\ge2\sqrt{\frac{8\left(x+1\right)}{2\left(x+1\right)}}=4\)
Dấu "=" xảy ra khi \(\frac{x+1}{2}=\frac{8}{x+1}\Leftrightarrow x=3\)
7/
\(R=\frac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge2\sqrt{\frac{25\left(\sqrt{x}+3\right)}{\sqrt{x}+3}}=10\)
Dấu "=" xảy ra khi \(\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\Leftrightarrow x=4\)
8/
\(S=x^2+\frac{2000}{x}=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{\frac{1000^2x^2}{x^2}}=300\)
Dấu "=" xảy ra khi \(x^2=\frac{1000}{x}\Leftrightarrow x=10\)
ĐK: \(x\ge0\)
Ta có:
M = \(\frac{x+6\sqrt{x}+34}{\sqrt{x}+3}\)
=\(\frac{x+6\sqrt{x}+9+25}{\sqrt{x}+3}\)
= \(\frac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}\)
=\(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\)
Áp dụng BĐT Cauchy cho hai số không âm ta có:
\(\sqrt{x}+3+\frac{25}{\sqrt{x}+3}\ge2\sqrt{\left(\sqrt{x}+3\right)\frac{25}{\sqrt{x}+3}}=2.5=10\)
Hay \(M\ge10\)
Dấu '=' xảy ra \(\Leftrightarrow\sqrt{x}+3=\frac{25}{\sqrt{x}+3}\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)^2=25\)
\(\Leftrightarrow\sqrt{x}+3=5\)(vì \(x\ge0\Rightarrow\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3\))
\(\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(TM\right)\)
Vậy,...
Học giỏi toán nhé!
ĐK \(x\ge0\)
\(M=\frac{x+16\sqrt{x}+64-10\sqrt{x}-30}{\sqrt{x}+3}\)
\(M=\frac{\left(\sqrt{x}+8\right)^2-10\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
\(M=\frac{\left(\sqrt{x}+8\right)^2}{\sqrt{x}+3}-10\)
ta có điều kiện \(x\ge0\) vậy \(M_{min}\) khi x=0
\(M_{min}=\frac{\left(\sqrt{0}+8\right)^2}{\sqrt{0}+3}-10=\frac{64}{3}-10=\frac{34}{3}\)
vậy \(M_{min}=\frac{34}{3}\) khi x=0