\(\sqrt{x^2+x-1}\) + \(\sqrt{-x^2+x+1}\)= x2 + x +1
# mã mã #
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(=\lim\limits_{x\rightarrow-\infty}x^2\left(1+\dfrac{x}{x^2}-\dfrac{1}{x^2}\right)=+\infty\)
b/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+x+1-x^2}{\sqrt{x^2+x+1}+x}+\lim\limits_{x\rightarrow+\infty}2.\dfrac{x^2-x^2+x}{\sqrt{x^2-x}+x}\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x}{x}+\dfrac{1}{x}}{\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}+\dfrac{x}{x}}+2\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x}{x}}{\sqrt{\dfrac{x^2}{x^2}-\dfrac{x}{x^2}}+\dfrac{x}{x}}=\dfrac{1}{2}+\dfrac{2}{2}=\dfrac{3}{2}\)
c/ \(=\lim\limits_{x\rightarrow+\infty}x\left(\dfrac{x^2+2x-x^2}{\sqrt{x^2+2x}+x}+2.\dfrac{x^2-x^2-x}{\sqrt{x^2+x}+x}\right)\)
\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{2x^2}{x}}{\sqrt{\dfrac{x^2}{x^2}+\dfrac{2x}{x^2}+\dfrac{x}{x^2}}}+2\lim\limits_{x\rightarrow+\infty}\dfrac{-\dfrac{x^2}{x}}{\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}}+\dfrac{x}{x}}=0\)
Hiển nhiên là cách đầu sai rồi em
Khi đến \(\lim x^2\left(1-1\right)=+\infty.0\) là 1 dạng vô định khác, đâu thể kết luận nó bằng 0 được
1. không đáp án đúng
2.\(\dfrac{1}{y-x}\sqrt{2x^2\left(x-y\right)^2}=\dfrac{-1}{x-y}x\left(x-y\right)\sqrt{2}\left(vì>y>0\right)=-x\sqrt{2}\)
\(a,ĐK:\left\{{}\begin{matrix}x\ge5\\x\le3\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
Vậy pt vô nghiệm
\(b,ĐK:x\le\dfrac{2}{5}\\ PT\Leftrightarrow4-5x=2-5x\\ \Leftrightarrow0x=2\Leftrightarrow x\in\varnothing\)
\(c,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow x^2+4x+5-2\sqrt{2x+3}=0\\ \Leftrightarrow\left(2x+3-2\sqrt{2x+3}+1\right)+\left(x^2+2x+1\right)=0\\ \Leftrightarrow\left(\sqrt{2x+3}-1\right)^2+\left(x+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x+3=1\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\\ d,PT\Leftrightarrow\left|x-1\right|=\left|2x-1\right|\Leftrightarrow\left[{}\begin{matrix}x-1=2x-1\\x-1=1-2x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)